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Abstra ct. Scroll wavesare three-dimensionalstadks of rotating spi-
ral waves,with spiral tips aligned along lament curves. Such spatio-
temporal patterns arise, for example,in reaction di usion systemsof
excitable media type.
We introduce and explore the crosswer collision as the only generic
possibility for scroll wave laments to change their topological knot
or linking structure. Our analysisis basedon elemenary singularity
theory, Thom transversality, and abadkwards uniquenessproperty of
reaction di usion systems.
All phenomenaare illustrated numerically by six mpeg movies down-
loadable at

http://www.mathematik.uni-bielefeld.de/do  cumenta/v 0l-05/21.html|
and, in the printed version, with six snapshotsfrom eat sequence.
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1 Intr oduction

Spatio-temporal scroll wave patterns have beenobsened both experimertally

and in numerical simulations of excitable media in three spacedimensions. See
for example , E @] and the referenceghere. Typical experimental settings
are the Belousor-Zhabotinsky reactions and its many variants.

In two spacedimensions, or in suitable planar sectionsthrough scroll wave
patterns, rigidly rotating spiral wave patterns occur; see gure . For pioneering
analysis motivated by propagation of electrical impulsesin the heart muscle
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Figure 1: Spiral wave patterns (model seesection 6). Shown on the left is a rigidly
rotating spiral wave with parameters as in section 6, on the right is a meandering
spiral wave, with parameter a = 0:65 instead of a = 0:8. For color coding seesection 7.

see[B4], 1946. Meandering tip motions are also obsened; seefor example
B3, B8, B, Al and the referenceghere. There is someambiguity in the de nition

of the tip of a spiral. It is an admissiblede nition in the senseof [L3 sec.4],to
assaiate tip positions (x1;x,) 2 R? at time t 0 with the location of zerosof
two componerts (u';u?) of the solution describing the state of the system:

(1.1) u= (ul;ud)(t; x1;x2) = O

In a typical excitable medium the valuesof (ut; u?) trace out a cycle as shown
in gure E along x-circles around the spiral tip. In a singular perturbation
setting, steep wave fronts are obsened along these x-circles. Only near the
spiral tip, theseu-cyclesshrink rapidly to the tip-value u = 0.

This scenario,among other obsenations, motivated Winfree to attempt a phe-
nomenological description in terms of states' = u=juj 2 S, for (almost) all
x 2 R?, with remaining singularities of ' at the tip positions. In the preser
paper, we return to a reaction di usion setting for u = u(t; x) 2 R?, keeping
in mind that the set u(t; x) = 0 is particularly visible, distinguished, and de-
scriptively important { not as an \organizing certer"whic h causesthe global
dynamicsto follow its pace,but rather asa highly visible indicator of the global
dynamics. In fact, de ning tip positions by other nonzerolevels(t; x)  const;
inside the cycle of gure E works just as well, and only re ects some of the
ambiguity in the notion of \tip position", as was mentioned above. With all
our results below holding true, independertly of such a shift of u-values, we
proceedto work with u(t; x) = 0 asa de nition of tip position.

Scroll wavesin three spacedimensionsx = (x1;X2;X3) 2 R3 can be viewed
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Figure 2: A cycle of values (u!; u?)(t; xo) through a time-p eriodic wave front at a
suitably xed position Xo in an excitable medium (seesection 6). Polar coordinates
de ne aphase' 2 S; along the dotted cycle.

as stacks of spiral waveswith their tips aligned along a one-dimensionalcurve
called the tip lament. As in the planar case,the tip lament may move
around in R3, and the assaiated sectional spirals may cortinuously change
their shapesand their mutual phaserelations with time. Denoting by (u';u?)
two componerts of the solutions of the assaiated reaction di usion systems,
again, we can consider laments ' ' asgiven by the zero sets

(1.2) u= (uhu?)(t x1;X2;X3) = 0:

We use two componerts here becausethe local dynamics of excitable media
are essetially two-dimensional. More precisely for eadh xed time t > 0 the
laments ' ! describe the zerosx 2 R® of the solution pro le

(1.3) X 7! u(t; x):

In other words, the lament ' ! is the zerolevel set of the solution pro le u(t; )
at time t:

Supposezerois aregular value of u(t; ), that is, the x-Jacobianuy (t; ) possesses
maximal rank 2 at any zero of u. Then the laments ' ! consist of embedded
curvesin R3, by the implicit function theorem. Moreover the laments depend
as smoothly ont as smoothnessof the solution u permits.

Therefore, collision of laments can occur only if the rank of ux(t; ) drops. To
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A

Figure 3: A scroll wave and its lament. The band is tangential to the wave front
at the lament.
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Figure 4: Crossover collision of oriented laments at time t = to

analyze the simplest possiblecase,we assume

0;

u(to; Xo)
(1.4) 0. 70 1

co-rank ux(to; Xo)

Let P denotea rank oneprojection alongrange uy(to; Xo) onto any complemen
of that range. Let E = ker ux(to;Xo) denote the two-dimensional null space
of the 2 3 Jacobean matrix uy. We assumethe following non-degeneracy
conditions for the time-derivative u; and the Hessianuyy , restricted to E:

P uq (to; Xo) 6 0; and

(1.5) Puxx (to; Xo)je  is strictly inde nite :

A specic exampleu(t; X) satisfying assumptions(L.4), (L.5) att = to; xo= 0
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is given by

ul(t; x)
u?(t; x)

(t to)+x? x3
X3!

(1.6)

In gure J we obsene the assaiated crossovercollision of laments in pro-
jection onto the null spaceE: att = ty two laments collide, and then re-
connect. Note that after collision the two laments do not reconnectas be-
fore, re-establishing the previous laments. Instead, they crossover, forming
bridges between originally distinct laments. Figure @ describesthe universal
unfolding, by the time \parameter" t, of a standard transcritical bifurcation in
x-space. In fact, supposeu(t; x) satis es assumptions(@), (@. Then there
exists a local di eomorphism

=
&9 = (tx)
mapping (to;Xp) to o = to, o = 0, sudc that the original zero set trans-
forms to that of example (E), rewritten in ( ; )-coordinates. This follows
from Lyapunov-Schmidt reduction and elemenary singularity theory; seefor
example [fLF].
In an early survey, Tyson and Strogatz @] hinted at topologically consisten
changesof the connectivity of oriented tip laments, asa theoretical possibility.
The point of the present paper is to identify speci c singularities, in the sense
of singularity theory, which achieve such changesand which, in addition, are
genericwith respect to the initial conditions of generalreaction di usion sys-
tems. Genericity refersto topologically large sets. Thesesetscontain countable
intersections of open densesets, and are dense. We caution our PDE readers
here that we are not addressingissueslike loss of regularity (smoothness) or
developmert of singularities in a blow-up sense.Genericity is basedon pertur-
bations of only the initial conditions. We do not require any perturbations of
the underlying partial di erential equationsthemsehes.
We considerit a fundamertal idea to study solutions u(t; x) of partial di er-
erntial equations, qualitativ ely, by investigating the singularities of their level
sets{ possibly for all, or at least for genericinitial conditions. Such an idea is
already present in work by Schae er, [@] and more recertly by Damon, [,
[l [B] and the referencesthere. In view of example (.13) for linear scalar
parabolic equationsin one spacedimension below, the rst relevant example
canevenbeattributed to Sturm @], 1836. For presert day relevanceof Sturm's
obsenations, once motivated by Sturm-Liouville theory, seealso [, [, [BT.
The work by Schae er addressedevel setsof strictly convex scalar hyperbolic
consenation laws in one spacedimension. His analysis is basedon the vari-
ational formulation due to Lax: for almost every (t; x) the solution u(t; x)
appears as the pointwise minimizer of a given function, which involves the
initial conditions up(x) explicitly. The badkwards uniquenessproblem, a some-
what delicate technical point for our parabolic systems,is circumvented by the
explicit Lax formula in his context.
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Damon's work is motivated by Gaussianblurring and by applications of the
linear heat equation to image processing,but appliesto a large classof di er-
ertial operators. Unfortunately, the partial di erential equationsare viewed as
purely local constraints on the k-jet of \solutions". Neither initial nor boundary
conditions are imposedon these\solutions". Genericity is understood purely
in the spaceof smooth suc \solutions". The important nonlocal PDE issueof
genericity in terms of initial conditions, as addressedin our presern paper, has
not beenresolved by Damon's approach.

In corntrast to these abstract results, strongly in the spirit of pure singularity
theory, our motivation is the global qualitativ e dynamics of reaction di usion
systems. In particular, we do require our solutions u = u(t; x) to not only
satisfy the underlying partial di erential equations near (to;Xo) but also the
respectiveinitial and boundary conditions. For atechnically detailed statement
seeour main result, theorem p.1 below. As a consequencethe crossaer of
laments just describedis the oneand only non-destructive collision of laments
possible{ for a genericset of initial conditions. Seetheorem @

The remaining sections are organized as follows. Preparing for the proof of
theorem 2.1, we provide an abstract jet perturbation lemmain section 3 which
is basedon badkwards uniquenessresults for linear, non-autonomousparabolic
systems. In section 4, we prove theorem E using Thom's jet transversality
theorem. Moreover we presert a generalizationto the vector caseu 2 R™; m

2; in corollary @ Theorem is proved in section5. Section 6 summarizesa
fast numerical method, dueto @] for time integration of a speci c excitable
medium with steep fronts in three spacedimensions. In section 7 we adapt
this method to compute laments and their assaiated local isochrone phase
bands. We concludewith numerical examplesillustrating crosswer collisionsin
autonomous and periodically forced reaction di usion systems,including the
unlinking of linked twisted scroll rings and the unknotting of a trefoil torus
knot lament; seesection 8.

Ackno wledgment.  Both authors are grateful to the Institute of Mathematics
and its Applications (IMA), Minneapolis, Minnesota. The main part of this
work was completed there during a PostDoc stay of the secondauthor and
seweral visits of the rst author asseniorvisiting sciertist during the specialyear
"Emerging Applications of Dynamical Systems", 1997/98. We are indebted to
Jim Damon for helpful discussions,and to the refereefor additional references.
Wethank Martin Rumpf and Peter Seracka for help with visualization. Support
by the Deutsche Forschungsgemeinshaft is also gratefully adcknowledged.

2 Main Results

For a technical setting we consider semilinear parabolic systems

(2.1) ul = divy (d' (6 x)r xu') + (6 X upr cu)
throughout the presert paper. Here u = (ut::i;u™ 2 R™; x =
(Xg;::0xn) 2 RN. The data d';f' are smooth with uniformly posi-
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tive de nite diusion matrices d'. The bounded open domain is assumedto
have smooth boundary. Inhomogeneousmixed linear boundary conditions

(2.2) (UG X) + ()@ X) = (X)

with smooth dataand ; ; O; 2+ 2 1 areimposed. Periodic bound-
ary conditions are also admissible, as well as uniformly parabolic semilinear
equations on compact manifolds with smooth boundaries, if any.

The solutions

(2.3) u = u(t; X; up)
of (2.1), (B.9) with initial condition
(2.4) u(0; x; ug) = Uo(x)

de ne a local semi-ewlution systemin the phasespaceX of proles ug() in
any of the Sobolev spacekuo?P() k% > N=p, which satisfy the boundary
conditions (R.2); see[fL§] for a reference. By the smoothing property of the
parabolic system, solutions are in fact smooth in their maximal open intervals
of existencet 2 (0;t.+ (up)) and depend smoothly onug 2 X, both when viewed
pointwise and when viewed as x-pro les u(t; ;up) 2 X.

To addressthe issueof singularities u(to; Xg) = 0, in the senseof singularity the-
ory, we considerthe jet space JX of Taylor-polynomialsin x = (x1;:::;Xn) 2
RN of degreeat most k, with real coe cien ts and vector valuesu 2 R™. De n-
ing the k-jet j Xu with respectto x at (to; o) as

(2.5) (G Xu)(to; x0) := (u; @u;::: ; @u)(to; Xo);

Taylor expansionat xo allows us to interpret j Xu(to;Xo) asan elemen of our
linear jet spaceJX satisfying

(2.6) u(to; Xp) = O:
Here and below, we assumethat k°> k + N=p sothat the evaluation
(2.7) u 7! jXu(to; xo)

becomesa bounded linear map from X to J)¥, by Sobolev embedding.

On the level of k-jets, a notion of equivalenceis induced by the action of local
CKk-di eomorphisms x 7! ( x);u 7! ( u) xing the originsofx 2 RN;u2 R™,
respectively. Indeed, for any polynomial p(x) 2 JX with p(0) = 0, we may
considerthe transformed polynomial

(2.8) ixC p o) 238
We call the jet (R.§) contact equivalentto j¥p = p; seefor example [[L§].
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By avariety S R we heremeana nite disjoint union

(2.9) s= 5
j=0

of embedded submanifolds S; R with strictly decreasingdimensionssuch
that §;, [ :::[ S, is closedfor any j;. We call codimg Sy the codimension of
the variety Sin R .

Similarly, by a singularity (in the senseof singularity theory) we meana variety
S JXin the senseof (.9), which satis es u = 0 and is invariant under any
of the contact equivalences(@). Let codim;¢ S denote the codimension of
S, viewed as a subvariety of JX. Shifting codimension by N = dimx for
cornveniencewe call

(2.10) codim S := (codim,x S) N

the codimension of the singularity S. For example, a typical map (to; Xo) 7!
jKu(to; x0) with xo 2 RN;u 2 R™ will miss singularities of codimension 2 or
higher. In contrast, the map can be expected to hit singularities S of codi-
mension 1 at isolated points t = tg, and for somexo 2 RN. Having shifted
codimension by N in (R.10Q) therefore corveniertly allows us to obsene that
typical pro les of functions u(t; ) miss singularities of codimension 2 ertirely,
and encourter suc singularities of codimension 1, anywhere in x 2 RN ; only
at discrete times t: We aim to show that this simple arithmetic also works for
PDE solutions u(t; x) under genericinitial conditions.

Sincethe geometrically simple issueof codimensionis overloadedwith { some-
times conicting { de nitions in singularity theory, we add some examples
which illustrate our terminology. First considerthe simplest case

(2.11) S=fu=0g JX

whereu(t; ) : RN I R™. Then codimS = m N. For systemsof m = 2
equationsin N = 0 spacedimensions,that is, for ordinary di erential equations
in the plane, typical trajectories fail to passthrough the origin in nite time:

codimS = 2. For N = 1, we can expect the solution curve prole u(t; ) to

passthrough the origin at certain discrete times ty and positions xq, because
codimS = 1. For N = 2 we have codimS = 0. We therefore expect isolated
zerosto move cortinuously with time: seeour intuitiv e description of planar
spiral wavesin section 1 and gure . SincecodimS = 1 for N = 3, we
expect zerosof u(tp; ) to occur along one-dimensional laments, even for xed

to. This is the caseof scroll wave laments ' ' in excitable media.

Next we consider a scalar one-dimensionalequation, m = N = 1. Multiple

zerosare characterized by

(2.12) S = fu= 0;ux = 0Og;
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to tJ t

Figure 5: Saddle-node singularities of codimension 1.

a setto which we ascribe codimension1. Indeed, we cantypically expect a pair
of zerosto coalesceand disappear asin (to; Xg) of gure E The opposite case,
a pair creation of zerosasin (tJ;x$); does not occur for scalar nonlinearities
f satisfying f (t; x; 0;0) = 0. This obsenation, going badk essetially to Sturm
[@], conveysconsiderableglobal consequencefor the assaiated semi ows; see
for example [[L3] and the referencesthere.

Passingto planar 2-systems,m = N = 2, the samesaddle-nale bifurcations of
gure E could for example correspond to annihilation and creation of a pair of
tips of counter-rotating spirals, respectively.

We conclude our seriesof motivating exampleswith the singularity ([.4) of
lament collision in systemssatisfying N = m + 1:

(2.13) S=fu=0; co-rankuy 1g:

Note that codim S = 1. For the stratum Sy of S with lowest codimension we
can assumethat the quadratic form Puy je is indeed nondegenerate,in the
notation of (E). Under the additional transversality assumptionPu; 6 0, the
strictly inde nite casewasdiscussedn sectionl. It leadsto crosswer collisions,
which are our main applied motivation here. The strictly de nite case,positive
or negative, leadsto creation/annihilation of small circular laments. For a
numerical realization of the assaiated scroll ring annihilation we refer to the

simulation in gure [

After our intermezzo on singularities we now addressgenericity. We say that

a property of solutions u(t; x; ug) of our semilinear parabolic system (R.1) {

(E) holds for generic initial conditions ug 2 X if it holds for a genericsubset
of initial conditions. Here subsetsare generic (or residua) if they cortain a
courtable intersection of open densesubsetsof X . Recall that generic subsets
and countable intersections of generic subsetsare densein complete metric

spacesX , by Baire's theorem; see[@, ch. 12].

With thesepreparations we can now state our main result concerningsolutions
u(t; x) of our parabolic system(R.1) { (B-4) with genericinitial conditions ug 2
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to t9 t

Figure 6: Annihilation (left) and creation (right) of closed lamen ts

X WK% | Ck. Asbefore0 t< t,(ug) denotesthe maximal interval of
existence. Finally, we recall that amap :V ! J betweenBanach spacesis
transverseto a variety S= Sg[ :::[ §j,, in symbols:

(2.14) ¥S;

if (v)2S; implies

(2.15) TwS + rangeD (v) = J;
seefor example[f, [L9].

Theorem 2.1 For some xedk 1, considera nite collection of singularities
S'  Jk, each of codimension at least 1. Then the following holds true for
solutions u(t; x) of (.1) { (B.4) with genericinitial conditions ug 2 X .
Singularities S' with

(2.16) codimS' 2

are not enmuntered at any (to;Xo) 2 (0;t+ (Uo)) . In other words,
jKu(to;xo) 2 S' for some0 < to < ti(Up); Xo 2  implies codimS' = 1.
The map

Oiti(u) ! I

(2.17) (to: Xo) 7! jxu(to;xo)

is in fact transverseto each of the varieties S'. In particular, the points (t§; x3)
whete the solution u(t; x) encounters singularities S' of codimension 1 are iso-
lated in the domain [O; t+ (up)) of existene. Althoughthere can be countably
many singular points (tg;xg) accumulating to the boundary t. (upg) or @ , the
valuesty are pairwise distinct.
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Theorem 2.2 For some xed k 1, consider solutions u(t; x) of (2.2) { (B-4)
with N = 3; m = 2, that is with x 2 R3 and u(t;x) 2 R?. Then for
generic initial conditions ug 2 X the following holds true.
Except for at most countably many times t = tg 2 (0;t+ (ug)), the laments
(2.18) fx2 ju(tx)=0g
are curves emtedded in , possibly accumulating at the boundary. At each
exeptional valuet = t}, exactly one of the following occurs at a unique location
Xg 2

(i) a creation of a closel lament, or

(i) an annihilation of a closal lament, or

(iii) a crossovercollision of laments.
For cases(i),(i) ses guresl, | for case (i) se guresf P13 and

€4 { (9.

3 Jet Perturba tion

In this sectionwe prove a perturbation result, lemma3.1, which is crucial to our
proof of theoremP.1. We work in the technical setting of semilinear parabolic
systems(R.1) { (R.4) with assaiated ewvolution

(3.1) u = u(t; X; up)

on the phasespaceX ofWko?p( )-pro les u(t; ;;up) satisfying Robin boundary
conditions (E). Let k° % > k 1, to ensure the Soholev embedding
X I CK(). Let

(3.2) D:="f(txug)jx2 ;up2X; 0<t<t:(ug)g
denote the interior of the domain of de nition.
Lemma 3.1 The map

jku: D 1 3k

(3.3) (X uo) 7' jXu(t x;uo)

isa C map, for any . For any (t; X; ug) 2 D, the derivative
(3.4) Duj Ku(t; x;ug): X I J¥
is surjective.
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Pr oof:

The regularity claim follows from smoothnessof the data d';f'; ;; ; and the
smoothing action of parabolic systems;seefor example [fL6, 6, P9, L4, 1.

To prove surjectivity of the linearization (@) with respect to the initial con-
dition, we essetially follow [E]. First obsene that for any xed x¢ 2 the
linear evaluation map

jkox o1 gk
(3.5) v 7' jkv(xo)

is bounded, becauseX | CX(), and trivially surjective. Moreover, the jet
spaceJ) is nite-dimensional. It is therefore su cien t to shaw that the lin-
earization

Dy, u(t; ;ug) : X ! X

(3.6) Vo 7! wv(t)

possesseslenserange, for all ug 2 X, 0< tg < t: (uUg). Herev(t; ) satis es
the linearized parabolic system

(3.7) Vi = divi (i ()1 V) + fo v v

with boundary conditions (R.2) for v and initial condition v(0; ) = vo. The
partial derivativesf;;f of the nonlinearity f = f (t; x; u; p) are to be evaluated
along (t; x; u(t; x);r xu(t; x)).

To show the density of range D, u(t; ;up) in X, we now proceedindirectly.
Suppose

(3.8) closx Dy, u(to; ;ug)X 6 X:

Then X cortains a nonzeroelemert w(to; ) in the L?-orthogonal complemert
of Dy,u(t; ;ug)X in X. Consider the assaiated solution w(t; ) 2 X of the
formal adjoint equation

_ X o
(3.9) wp = divi(di(tx)Tr xw') + dive (W L) (F S w);
j
for0 t to, still with boundary conditions (R.3) but with \initial" condition
W(to; ) at t = to. We again usethe notation f ), for the partial derivative of f!
with respectto r u', here.
Direct calculation shows that scalar products h; i betweensolutions v(t; ) of

the linearization (B.7) and solutions w(t; ) of its formal adjoint (B.9) in L?()
are time-independert. Therefore, by construction of w(tp; )

(3.10) tv(t; )sw(t; )icz(y = hv(to; );w(to; )i = 0;
forall 0 t to. Evaluating att = 0;v(0; ) = vp 2 X, we conclude

(3.11) tvo,w(0; )iL2(y =0
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for all vg 2 X, and hence
(3.12) w(0; )= 0:

In other words, the backwards parabolic system(@) possessea solution w(t; )
which starts nonzeroat t = to > 0 but endsup zeroat t = 0. This is a contra-
diction to the so-calledbadkwards uniquenessproperty of parabolic equations.
Seefor example [[14], [[L§] and the referencesthere. By cortradiction, we have
therefore proved that

(3.13) closg Dy, u(to; ;ug)X = X;

contrary to our indirect assumption(@). This completesthe indirect proof of
the perturbation lemma. Vi

4 Proof of Theorem 2.1

Our proof of theoremP.1is basedon Thom's transversality theorem [Bd, fi]. For
conveniencewe rst recall a modest adaptation of the transversality theorem,
xing notation. We usethe conceptof transversality of amap to avariety S

asexplainedin (.9, (.14, (B.19. The proof is basedon Sard's theorem and
is not reproduced here.

Theorem 4.1 [Thom transversality]
Let X be a Banachspoe,D R X openand

0

D ! R
4.1
D (Yiu) 7' (iuo)
aC -map. LetS R’ bea variety and assume

(4.2) % S;

(4.3) > maxf0;” codimgo Sg:

Then the set

(4.4) Xs=fug2 X j (;ug) S; where de nedg

is genericin X (that is: contains a countableintersection of open densesets).
The point of the theorem is, of course, that in Xg transversality to S is
achieved, for xed up, by varying only y in  (y;ug). For example,up 2 Xs and

codimgo S > " imply

(4.5) (Y;uo) 625
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whenewer y is sud that (y;ug) 2 D. This follows immediately from condition
( on transversality. In other words, for generic up the image of ( ;up)
missesvarieties of su cien tly high codimension.

We now use theorem 1. to prove our main result, theorem .1 We consider
the jet evaluation map

(4.6) (t; X; Ug) = jXu(t; X; Uo)

of the ewolution u(t; ;uo) assaiated to our parabolic system;see(R.1) { (B.5).
We chooseD to be the (open) domain of de nition

4.7) D=1f(txup)jO<t<ti(up); X2 ; uUp2Xg

of the ewolution; clearly y = (t;x) 2 RN*! sothat * = N + 1. For the variety
S we choose, successiely, any of the nitely many singulargties S' JK of
theorem (R.1). Their codimensionsas subvarieties of J¥ = R are

(4.8) codimyx S' = N + codim S';

see(R.10). Note that assumptions(#.9) and (§.3) both hold, independertly of
the choice of k for the varieties S J¥, by lemmaB.] Claim (R.1%) about
transversality of (to;Xo) 7! u(to;Xo;Ug) to any singularity S' is now just the
statemert of theorem[4.1.

Next, we prove that singularities S' with codimS' 2 are missedaltogether,
for genericinitial conditions up 2 X, aswas claimed in (R.16). We evaluate

(.9 to yield

(4.9) codim;x S' = N + codimS' N+ 2> N+ 1="

In view of example(@), this provesour claim (: generically, only singu-
larities S' with codim S' = 1 are encourtered.

Now we provethat the positions (3 ; x5 ), wheresingularities S' with codim S' =

1 are encountered, are generically isolated in [0;t+ (ug)) . Indeed assum-
ing jKuo 62S', we have t§ > 0 without loss of generality. Since the lower-
dimensional strata Sji; i 1ofthe singularity S' are of (singularity) codimen-
sion 2, they are missedby solutions ertirely, for genericinitial conditions up.

Therefore

(4.10) i Ku(td;xg;uo) 2 S}

only hit the maximal strata, staying away from the closed union of lower-
dimensional strata, uniformly in compact subsetsof [0;t. (up)) . Because
the S} are nitely many embeddedsubmanifoldsof codimensionN + 1in JX and
becausethe crossings( are transverse, the corresponding crossingpoints
(t5;xg) are alsoisolated in [0;t+ (ug)) , asclaimed.

It remainsto show that the valuestf are mutually distinct for genericinitial

conditions ug 2 X . To this end we considerthe augmerted map

~ D oJk gk

@41 (t: x1:X2;Uo) ! (J{u(t; X1 Uo);j X U(t; X2; Uo))
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on the open domain

(4.12)
D= f(t;X1;X2;Up) jO< t <ty (U); X1;%X22 ; X1 6 Xp; Up2 XQ:

To apply Thom's transversality theorem @ we only needto chedk the transver-
sality assumption (B.9). In fact we show

(4.13) ~% fog2 J¥ Ik

X *

This follows, analogouslyto lemma B.4, from x; 6 x and the fact that the
linearization D, u(to; ;Uo) possessedenserangein X ; see(B.6) { (B.19.
We can therefore apply theorem E to ~with respect to the varieties

(4.14) S=s" s

In Jk JX, thesevarieties have codimension

(4.15) codimyx ;« S= 2N + codim S'* + codim S'? = 2N + 2
Sincethis number exceeds

(4.16) dim(t; x1;x2) = 2N + 1;

the variety S is missedby ~(; ; ;uo), for genericup 2 X. Seeexample (E)
again. Therefore the times t§ where singularities S' can occur are pairwise
distinct for genericinitial conditions, completing the proof of theorem E Vi

Reviewingthe proof of theorem Q which hingescrucially on the transversality
statemert (E) of our jet perturbation Iemma@, we state an easygeneraliza-
tion which is important from an applied viewpoint. Supposethat only m® m
pro les (or mOlinear combinations) out of the m proles u = (ul;::;uM)(t; x)
are obsenable:

(4.17) b= Puy;

for some linear rank m° projection of R™. Then b(t; x;ug) may encourter
certain singularities 8' in the spaced of k-jets with valuesin range .

Cor ollar y 4.2 Under the assumptionsof theorem 2.1 and in the alove set-
ting, theoremP.1 remainsvalid, verkatim, for singularities 8 3% of the k-jets
jKb(t; x) of the observablesh := Bu. we emphasizethat codimensions of el
are then to be computed in J¥.

Pr oof:
Acting on the dependert variables (u;::: ;u™), only, the projection B lifts to
a projection B, from J¥ onto ¥ sud that

(4.18) j KBu(t; x; u) = BjXu(t; x; uo)
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710 Bernold Fiedler and Rolf M. Mantel

Therefore the surjectivity property (@) of Iemma@ remains valid for
(4.19) Du,j Xb(t; x;ue): X I X

Repeating the proof of theorem .3, now on the level of b; \H‘;Qi, provesthe
corollary. A

5 Proof of Theorem B.2

To prove theorem Ewe invoke theorem ﬂfor X 2 R3; u(t; x) 2 R?, and
appropriate singularities S'  JX of singularity codimension 1, in the senseof

(R.10).

We rst considerthe casethat 0 is a regular value of u(t; ) on , that is

(5.1) rank uy(to;Xo) = 2

is maximal, whenewer u(to;xe) = 0; 0 < tg < t+(ug); Xo 2 . Then the
lament

(5.2) fx2 ju(te;x) = 0g

is an embeddedcurvein , asclaimedin (B.1§).
Next considerthe case

(5.3) rank uy(to;Xo) 1

Let S JX72 be the set of those 2-jets (U; Ux; Uxx) 2 JK=2 satisfyingu = 0
and rank uy = 1. Clearly S is a singularity in the senseof (£.9), (P.10) and

(5.4) codmS=1

aswas discussedin example(). We recall that the maximal stratum Sy of
S, determining the codimension, is given by the conditions

rank uy = 1;

(5.5) Puy je nondegenerate

Here E := ker ux denotesthe kernel and P denotesa projection in R? onto a
complemen of the range of the Jacobian uy.

In view of example (2.13) and section 1, nondegeneracyof Pux je givesrise to
the three cases(i) - (iii) of corollary .3, via theorem .3, if only we show that

(5.6) Pui(to;xo) 6 0

whenewer j 2u(to; Xo) 2 S.
By theorem .1, we have

(5.7) j2u(; )% S
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in J2, at (to; Xo). Evaluating only transversality in the rst componert u= 0
of j2u = (u; ux; Ux ) 2 JZ, we seethat

(5.8) rank (ui;uy) = 2
at (to; Xp). SincePux = 0 by de nition of P, this implies
(5.9 Pui(to;xo) 6 0

and the proof of corollary P.3 is complete. A

6 Numerical Model and Methods

For our numerical simulations, we use two-variable N = 2 reaction-di usion
equations

(6.1) @ = 4ut+f(ele?)
' @ = D4 & + g(ut; )

on a square or cube  with Neumann boundary conditions. The functions

f (u; &) and g(u'; &%) expressthe local reaction kinetics of the two variables

&' and #?. The di usion coe cien t for the u! variable hasbeenscaledto unity,

and D is the ratio of di usion coe cien ts. For the reaction kinetics we use

feh; o) = et eD)(er  up (8P)
(6.2) i) o th

with ug () = (& + b=a. This choice diers from traditional FitzHugh-
Nagumo equations, but facilitates fast computer simulations [El]. In non-
autonomous simulations, we periodically force the excitability threshold b =
b(t) = by + Acog! t). We keepmost model parameters xed at a= 0:8; by =
0:01; = 0:02,and D = 0:5.

Without forcing, the medium is strongly excitable, see gure ﬂ See gure E
for the dynamics of a wave train. In two space dimensions, the equations
generaterigidly rotating spirals with small cores. These spirals are far from
the meanderinstabilit y, and appropriate initial conditions quickly corvergeto
rotating waves. We map the coordinates (&#'; &) into the (u!; u?)-coordinates
of theoremP.3 by setting u' = & 0:5and u? = & (a=2 hky). We have
remarked in the intro duction, already, that our results are not e ected by such
a shift of level sets.

In the autonomous caseswe choosea forcing amplitude A = 0, of course. For
collision of spirals in two dimensions, we choose A = 0:01;! = 3:21. For
collision of scroll wave laments in three dimensions,we chooseA = 0:01;! =
3:92.

The challenging aspect of computing wave fronts in excitable media is the res-
olution of both spatial and temporal details of the wave fronts while the inter-
esting global phenomenaoccur on a much slower time scale. Sinceboth spatial
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and temporal resolutions have to be high, the main computational speedupis
achieved by minimizing the number of operations necessaryper time step and
spacepoint.
Simulations with cellular automata encourter problems due to grid isotropies
[@, @ @]. The existenceof persistert spatial wave fronts impedesalgorithms
with variable time steps. Due to linearity of the spatial operator, methods with
xed, small time steps are feasible. Moreover, &' and & can be updated in
place away from the wave front.
We use a third-order semi-implicit stepping routine to time step f, combined
with explicit Euler time stepping for g and the Laplacian term. In the eval-
uation of f and in the diusion of u!, we take into accourt that #* 0in a
large part of the domain, and that f (0;&?) = 0. This allows a cheap update
of approximately half of the grid elemens and, even with a straightforward
nite-di erence method, enablessimulation on a workstation. The extra e ort
of an adaptive grid with frequert re-meshinghas beenavoided.
In three spacedimensionsN = 3, we usea 19-point stencil with good numerical
properties (isotropic error, mild time-step constraint) for approximating the
Laplacian operator. In two dimensionsN = 2, we usethe analogous9-point
stencil. Neumann boundary conditions are imposedon all boundaries.
For speci ¢ simulation runs in this paper, we take 125 grid points. The domain
is chosensu cien tly large, in terms of di usion length, to exhibit scroll
wave collision phenomena. The time step 4 t is chosencloseto maximal: let h
denotegrid size, = 3=8the stability limit of the Laplacian stencil, and choose
4t := 0:784 h?. This results in the following numerical parameters: domain
= [15;15F, grid spacingh = 30=124 1=4, time step 4t = 0:0172086,
giving 4 t= = 0:86043. For high-accuracy studies of the collision of scroll
waves, we usea higher resolution of = [ 10;10F, h = 20=124 1=6,4t =
0:00764828giving 4 t= = 0:3882414.Note that 4 t= < 1in both caseswhich
meansthat the temporal dynamics are well resolved. Further numerical details
for the three-dimensionalsimulations are given in [fL]].

7 Filament Visualiza tion

After discretization in the cube domain , and time integration, the solution
data u(t; x) 2 R? are given as valuesu(t;; x;) at time stepst; and at positions
Xi on a Cartesian lattice. In our two-dimensionalexamples, gure and exam-
ple B., we show the vector eld (#!;&?) = (ul+ 0:5;u?+ (a=2 k), choosing
for each point a color vector in RGB spaceof (u!;0:73 (u?)?;1:56 u?). We
alsomark the (past) trace of the tip path in white, to keeptrack of the move-
merts of the spiral tip. In gure E and example@, we depict the wave front
in x 2 asthe surfaceu! = 0.

To determine the lament location, alias the level set

(7.1) "= fx 2 jul(tx) = u?(t; x) = Og;

we usea simplicial algorithm in the spirit of [g, ch. 12].
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As in section 6, let Q be any of the small discretization cubes. We trian-
gulate its facesby bisecting diagonals, denoting the resulting closedtriangles
by . The cornersof are verticesof Q. We orient accordingto the induced
orientation of @ by its outward normal and the right hand rule applied to
()

By linear interpolation, u(t; ) R? is alsoan oriented triangle. The lament
' ' passeghrough , onthe discretizedlevel, if and only if 02 u(t; ). Inverting
the linear approximation u on de nes an approximation ' * 2 to ' '\
We orient ' ! to leave Q through , if the orientation of the triangle u(t; )
is positive ("door out"). In the opposite caseof negative orientation we say
that 't enters Q through ("door in"). By elemerary degreetheory, the
numbers of in-doors and of out-doors coincide for any small discretization cube
Q. Matching in-doors ' ' and out-doors' ', in pairs de nes a piecewiselinear,
oriented approximation to the lament ' . For orientations before and after
crosswer-collision see gure f

Note that here and below, we freely discard certain degenerate,non-generic
situations from our discussionwhich complicate the presenation and tend to
confusethe simpleissue. In fact, dueto homotopy invarianceof Brouwer degree,
this piecewiselinear (PL) method is robust with respect to perturbations of
degeneracietike lamen ts touching afaceof the cube Q or repeatedly threading
through the sametriangle

To indicate the phasenear the lament ' {, we compute a tangential approxi-
mation to the accomparying somewhatarbitrary isochrone

(7.2) ti=fx2 jul(t,x) 0= u?(t;x)g

as follows. The values (ut;u?)(t;x) = (; 0) with > 0 de ne a local half

line in the facetriangle x 2  through the lament point '' 2 . Together
with a lament point ' ' , in another cube face, this half line also de nes a

half spacewhich approximates the isochrone !, locally . We choosea point

'+ in this half space,a xed distance from ' ! and such that the line from

't to ! is orthogonal to the lament line from '! | to ''. The sequence
of triangles (" ' ;;~ ;) ("t ;' Y then de ne a triangulated isochrone

band approximating ! nearthe lament ' t.

In practical computations shown in the next section, we distinguish an absolute
front and badk of the isochrone band by color, independerily of cameraangle
and position. This di erence re ects the absolute orientation of laments, in-

troduced above, which inducesan absolute orientation and an absolute normal

for the accomparying isochrone !. The absolute normal of the isochrone !

also points into the propagation direction of the isochrone, by our choice of

orientation.

8 Examples

In this section we present four simulations of three-dimensional lament dy-
namics, both in autonomousand in periodically forced cases.All examplesare
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basedon equations (@) with the set of nonlinearities and parameters speci-
ed there. We useacube = [ 15 15F as a spatial domain, together with
Neumann boundary conditions. Only in example E we use a smaller cube

= [ 10;10PF: Re ecting the solutions through the boundaries we obtain an
extension to the larger cube 2 with periodic boundary conditions. Viewing
this systemon the at 3-torus T3, equivalertly, eliminates all boundary con-
ditions and avoids the issue of @ not being smooth. In the paper version,
ead of the spatio-temporal singularities at (to; Xo) is illustrated by a seriesof
still shots:t' O;t/ to;t=to;t' toandt = tg,q for the respective run. In
the Internet version, eadh sequences replacedby a downloadable animation in
MPEG-1 format; see

http://iwww.math.f  u-berli n.de/~Dynamik/

For possiblelater, updated and revised versions, pleasecontact the authors.
Discretization was performed by 125° cubesand a time stepof 4 t = 0:0172086
(4t = 0:00764828in example@); seesection 6. Autonomous casesrefer to
the forcing amplitude A = 0, whereasA = 0:01 switches on non-autonomous
additiv e forcing.

8.1 Initial Conditions

Prescribing approximate initial conditions for colliding scroll wavesin three
spacedimensionsis a somewhat delicate issue. We describe the construction

in B.1.2 below. We discussour four examplesin sectionsB.3B.6.

8.1.1 Tw o-dimensional spirals

According to our numerical simulations, planar spiral waves are very robust
objects. In fact, su cien tly separatednondegeneratezercesof the planar \v ec-
tor eld" (uj;u3)(x1;x2) of initial conditions typically seemedo convergeinto
collections of single-armed spiral waves. Their tips were located nearby the
prescribed zeroesof up.

To preparefor our construction of scroll wavesbelow, we neverthelessconstruct
Up as a composition of two maps,

(8.1) Up =

(8.2) ; R? I C
(X1;%x2) 7'z

(8.3) : cC ! R?

z 7' (u};ud)

Here prescribesthe geometriclocation of the spiral tip and wave fronts. The
scalingmap is chosenpiecewiselinear. It adjusts for the appropriate range
of u-valuesto trace out a wave front cycle in our excitable medium, see g. f.
Speci cally, we choose

(8.4) (2) = (u;u?) = (Re z;Im z=4)
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near the origin. Further away, we cut o by constarts as follows:

8
2 05, whenRe(z) < 05

u = Re(z); whenRe(z) 2 [ 0:5;0:5]
" 05 whenRe(z) > 0:5
(8.5) 8
2 04 whenim(z) < 1.6
u? = S 0:25Im(z); whenlm(z) 2 [ 1:6; 1:6]
© 04 whenlIm(z) > 1.6
In the following, we will sometimesfurther decommpse = , ; where
(8.6) 1(2) = (Re(z);1m(2)=4)

is linear and the clamping , :R?! R?is the cut-o
(8.7) (ut;u?) 7! (sign(ut) minfj ulj; 0:5g; sign(u?) minfj u?j; 0:4g):

For example, this choice of , combined with the simplest geometry map
(X1;X2) = Xz + iXp, results in a spiral wave rotating clockwise around

the origin, with wave front at x; = 0;x, < O, initially, and wave back at

X1 = 0;x2 > 0.

A possibleinitial condition for a spiral | antispiral pair as in example@
below would be

[ 1515F ' C
(X1iX2) 7' jxaf 6+ ixa:

This re ection symmetric initial condition createsa pair of spirals rotating
around ( 6;0). The spiral at (6; 0) rotates clockwise and the symmetric spiral
around ( 6; 0) rotates anti-clo ckwise.

8.1.2 Three-dimensional scr olls

It is usefulto visualize a three-dimensionalscroll wave asa stack foliated by two-
dimensionalsliceswhich contain planar spirals. Initial conditions ug = for
scroll wavesthen cortain the following ingredients: a mapping :R3! C that
stacks the spirals into the desired three-dimensional geometry, and a scaling
: C! R2 Forplanar :R?! C asin (B.9), the scaling of (B.3)

(B-? generatesa spiral whosetip is at the origin in R2. For :R%! C, the
preimagein R? of the origin under the stacking map  will therefore comprise
the lament of the three-dimensionalscroll wave. For example, it is easyto nd

a stacking map that givesrise to a single straight scroll wave with vertical
lament: (X1;X2;X3) = X1 + iX2. As soon as laments are required to form
rings, linked rings or knots, however, the design of stacking maps with the
appropriate zero set becomesmore di cult.
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For the generation of more complicated stacking maps , we largely follow the
method pioneeredby Winfree et al [B7, [L8, Bd]. This approach usesa standard
method of embedding an algebraic knot in 3—space[§]. For convenienceof our
readers,we brie y recall the construction here.

We construct stacking maps : R® ! C with prescribed, possibly linked or
knotted zero set asa composition

(8.8) =p s
Here the embeddings: R®! C2? will be related to the map
(8.9) s: R®1 & R*=cC?

denoting the inverseof the standard stereographicprojection from the standard
3- sphereS? of radius " to R®; see(B.13) below. The map

(8.10) p: C2! C

is a complex polynomial p = p(z1;z2) in two complex variables z;, z,. The
zero set of p describes a real, two-dimensional variety V in C2. Consider the
intersection '~ of V with the small 3-sphereS?, that is'~:= V \ S?. Typically,
' = s (9 R? the zerosetof , will be a one-dimensionalcurve or a
collection of curves: the desired lament of our scroll wave.

In the simplest case’ may be a circle embedded into the 3-sphereS3. |If
however zerois a critical point of the polynomial p, then the lament ' need
not be a topological circle. And evenif '~ happensto be a topological circle, it
may be embeddedas a knot in S°.

The inversestereographicmap s is given explicitly by

0 1
2"2x, !
N 22, g_ 22 X1+ 12
(811) s(X1:X2:Xs) = mr T @ 22k AT RZ+ " xg+ oyt
(R% 2"

whereR?  x? + x3 + x3. Note that points inside S? R?® are mapped to the
lower hemisphere,points outside S? to the upper hemisphereof S°.

In our construction (@ of the stacking map , we now replace the inverse
stereographicmap s by the embedding

0 1
X1
o X2 § _ CXq + iCX2
(8.12) S(X1;X2;X3) = C% X3 T cxg+ i(c?R2 %)

(cR* )

with a suitable scaling factor c: Clearly x ! 1 in R® implies s(x) ! 1 in
C2. In the examples@, E of a pair of linked rings and of a torus knot
below, the laments' = 1(0)\ , ~=s(")=p *0)\ s() do not inter-
sect the compact boundaries of the cube @, s(@), respectively. Therefore,
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the embedded paraboloid s(R?%) can in fact be modi ed outside s() without
changing the laments in . We modify s sud that closs(R®) closesup to a
di eomorphically embedded3-shereS di eotopic to S® in C2nf Og; by a family
sy of embeddingsO # 1. Moreover, we will choosep = p(z1;z2) sud that
7y = 2, = 0 is the only critical point of p in C2. If the embedding s;(R?)
remains transverseto p (0) in C2 nf0g throughout the di eotop y, then the
variety p 1(0) is an embeddedreal surfacein C?, outsidez = 0. The lament
'~=s(")=p 10)\ s() is dieotopic to somecomponerts of p 1(0)\ S?,
which in turn are described classicallyin algebraic geometry.

The sameremarks apply, slightly more generally, if we replaces by a compo-
sition

(8.13) s

where* denotesa nondegeneratea ne transformation in R3.
In summary, we generateour initial conditions by applying the following com-
position of mappings:

(8.14) Up = =(2 1) (p 9k

Here the scaling is given by (E){(). The modi ed stereographicprojec-
tion s is given by () with ~ = id; exceptin example E and with appro-
priate scaling constart ¢. The polynomial p is chosenaccordingto the desired
topology of the lament.

The initial conditions thus createddo not necessarilyrespect the boundary con-
ditions; howewver any intersection of a lament with the boundary is transverse.
Anyways, such intersections only occur in example[8.4. Neumann boundary
conditions can be enforced arti cially , by standard implementation, without
intro ducing additional laments.

8.2 Two-dimensional spiral pair annihila tion

As a preparation to visualizing the three-dimensionalbehavior, we begin with
the collision of a pair of counter-rotating planar spirals. We use a domain
= [ 15/15F and discretize with 125 grid points, resulting in the same
spatial and temporal resolution aswith our three-dimensionalexperiments. In
the movie and pictures, we shav the subdomain [ 15;15] [ 11:25;11:25]to
get the 3:4 sizeratio typical for video.
For initial conditions, we take the fully deweloped rigidly rotating spiral of
gure with origin at ( 6;0), for the half-plane x; 0, and re ect at the ver-
tical x,-axis. Near-resonan periodic forcing with an amplitude A = 0:01 and
I = 3:21 causesthe spirals to drift towards ead other until they collide. The
forcing makesthe spiral tips drift on an almost straight, epicyclic trajectory,
until they reach interaction distance at time t = 19:2. The paths of the tips
show that the forcing is strong enoughto move the spirals by approximately
twice their tip radius per rotation (which is small in comparisonto their wave
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t= 1960

t= 3177 t = 35.08

t = 37:67 t = 3846

Figure 7: Interaction and collision of a pair of spiral wavesin the plane.
MPEG-Mo vie [26.4MB,gzipped]

http://www.mathematik.uni-bielefeld.de/d ocumenta/v ol-05/21.mp eg/t wodim .mp g.gz
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length). During the interaction time of the spiral tips, the u? gradients are
much shallower than at other times. This can be seenby the fact that the
bright red part of the wave front is further away from the tip location.

The spirals then wander along the vertical axis, the excited certer getting
smaller with ewvery revolution. Finally the certer is too small to sustain exci-
tation (to = 39:825) and disappears; the spirals annihilate. The purely local
interaction betweenthe spiral tips shortly before collision from time t = 19:2
up to the extinction at to = 39:825 xo = (0; 1:4) is clearly visible from the tip
paths.

In view of theorem E this annihilation illustrates the left saddle-nale singu-
larity of g. ffor dimu= dimx = 2.

8.3 Scroll ring annihila tion

Our rst three-dimensional example shows the disappearanceof a closed cir-
cular lament as described, from an abstract singularity theory point of view,
in theoremP.3,(ii), and asillustrated in gure |§. The exampleis autonomous,
A = 0. Viewed in a vertical planar slice through the certer, the dynamics is
reminiscert of the two-dimensionalspiral pair annihilation @ Instead of pe-
riodic forcing, this time, the curvature of the three-dimensional lament seems
to be responsible for the lament contraction and annihilation [@].

The simplest initial conditions to create a scroll ring would be via the poly-
nomial p(z1;z2) = 2, resulting in the vertical axis s(Rez;) = x3 = 0 being a
symmetry axis both for up and for R3. In order for the initial conditions
to be lesssymmetric with respectto the boundariesof the domain , we apply
the translation "x = x x with x = ( 1:5; 3;0), and we choosea polynomial
p that alsodependson z;. Our initial conditions are prescribed by (), using

p = z+ 0:lizg;
(8.15) c = 821
Under discretization, scroll ring annihilation occurs at
(8.16) to = 9:10; xo = ( 1:5;3:5; 0:5):

For illustration/animation  see gs. j.

8.4 Crossover collision of scroll waves

We now return to the motivating phenomenonof this paper, outlined in the
intro duction; see([L.§) and gure f.

For ner spatial resolution, we choosea smaller domain, = [ 10;10F, with
discretization into 125° cubes. Due to the ner spacediscretization of 20=124
instead of 30=124, we choose a smaller time step of 4t = 0:00764828. The
example is non-autonomous, with forcing amplitude A = 0:01 and frequency
I = 3:92. Circumventing the polynomial construction = p s, we take

(8.17) (=0 = ((xg+ =6)+ isin(xy))(sin(x2) (X3 =6));
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t= 1574 t = 16:38

Figure 8: Scroll ring annihilation. By t = 4:2, a spiral-lik e cross-section has
formed. The scroll ring emits ball shaped target wavestwice per revolution, starting at
approximately t = 4:58. After scroll ring annihilation at to = 23:45, the surfaceu® = 0
largely follows a concertric target wave pattern rather than a scroll ring pattern. The
remaining target waves move outwards, and the medium becomesquiescer.
MPEG-Mo vie [10.7MB,gzipped]|
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t = 36:446 t = 39018

Figure 9: Collision of scroll waves: Two scroll wave lamen ts drift towards each
other. After t = 17, they start interacting visibly. Around t = 34, the laments
have found a common tangent plane and start lining up for collision. The crosswer
collision occurs at to = 3583, xo = ( 3:25;3:25;0). After collision, the laments
connect adjacent facesof the cube rather than opposite faces.
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which has zerosin [ =2; =2 at (0;x2; =6) and at (x1;0; =6). Taking

Ug = , we then start with explicit initial conditions
(8.18) ud(x) = sin(ax;)(axs ~ =6) + sin(axz)(axz + =6);
' u3(x) = 0:25 (sin(axj)sin(axy) (axg+ =6)(axz  =b)):

The spatial scalingfactor a is chosenas =20.

This example was selected because ( has zerces in [ =2; =2]° at
(0;x2;  =6) and at (x1;0; =6). Then (uj;u3) has zeroesat (0;%,; 10=3)
and at (x1;0;10=3). Therefore,at t = 0, laments are at right anglesto eadh
other. Near resonart forcing with amplitude A = 0:01 and frequency! = 3:92
is chosen,together with an appropriate initial phase,such that the laments
drift towards eac other and evertually interact.

Under discretization, crossaer collision occurs at

(8.19) to = 35:83; xo = ( 3:25; 3:25; 0):

For illustration/animation see gures [g and [L0.

Naively, there would be at least two options for non-destructive collision of the
two scroll wave laments. In gures [, f and [LQ, the two primary laments are
seento touch, forming a crossingwith four emanating semi-brandes. Keeping
their orientation, the semi-brandes could either simply re-connect, as before
the collision. Alternativ ely, they could separate and connect with that semi-
branch of matching orientation which they were not attached to previously.
The rst scenarioof a crossingcollision may be more intuitiv e at rst: the two
incoming semi-brandes simply reconnectto their previous outgoing partners
without exchangingtheir pairing. Such a crossingclearly would not changethe
global connectivity of the laments. Viewed in projection onto the tangert
plane E at collision time to, however, the lament brancheswould then have to
remain crossingimmediately beforeand after collision time tg, in contradiction
to both theorem R.2 and numerical obsenation in gures f§ and [L

Note that the laments, albeit initially straight lines, have to bend out of their
way considerablyin order to accommalate a generic crossaer collision in the
tangent plane E. Indeed, initial conditions, periodic forcing, and boundary
conditions are all choseninvariant under a rotation by 180° around the axis
A which diagonally connectsthe mid-edge points ( 10; 10;0) and (10; 10;0)
of the domain . This rotation invariance is presened by the solution u(t; :).
Becauserotation initially mapsone lament into the other, the collision point
Xo must occur on the axis A { and it does,see(. Similarly, the tangernt
plane E must be orthogonal to A, forming anglesof 45° with the straight line
initial conditions. We found it fascinating to watch the numerical laments
obey all these predictions.

We caution the reader here that theoremsP.3 and .3 as they stand, do not
directly apply within restricted classesof symmetric initial conditions. In full
generality, the necessarymodi cations require a restriction to, and analysis of,
invariant singularities and their codimensionsin spacesof symmetry invariant
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t = 35764 t = 35918

tangent plane

side view

top view

Figure 10: Details of the crosswer collision: breaking and reconnecting scroll
wave laments, consistertly with theorem 2.2. The two incoming semi-branches ex-
changetheir pairing with the two outgoing semi-branchesat t = to; X = Xo. Each
incoming semi-branch crossesover to its opposite outgoing semi-branch. The pro-
jected branches, when viewed locally in the tangent plane E = keruy to the collision
conguration att = to; X = Xo, neither crosshefore nor after collision.
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k-jets, again based on transversality, lemma 3.1. The present example and
its codimension, however, comply with our simple rotation symmetry. In the
coordinates (1.6) of crosswer collision this can be seenfrom invariance under
the 18(F rotation (x1;X2) 7! ( X1; Xz) around the x3 axis.

8.5 Collision of linked twisted scroll rings

In the previous non-autonomousexamplewe have seenhow crossaer collisions
changethe local connectivity of tip laments. We now presert an autonomous
example,with forcing amplitude A = 0, wheretwo linked laments mergeinto
a single lament. After collision the resulting lament is neither knotted nor
self-linked but is isotopic to a circle.

We start with initial conditions ug prescribed by (8.14), with the polynomial
p= 2z} z3 and stereographicscaling factor c= 8=21in (8.12).

p = Z 2z
(8.20) c = 821

Under discretization, crosswer collision occurs at
(8.21) to = 4:90; xo = (0;0; 2:14)

For illustration/animation seeg. 11

We commert on the changesof the global topological characteristics of twist
and linking which occur at the crossaer collision in this example. See gure 12
for a caricature of the essetial features.

To determine the twist of a non self-intersecting closed oriented lament ' !,
we rst orient the tip lament ' ! as described in section 7. Then we count
the integer winding number of the accomparying isochrone band t around' !,
accordingto the right hand rule. The integertwist can be positive, negative, or
zero. Next supposethe lament ' ! spansan embeddeddisk, asall laments in
gures 11, 12do. The orientation of' ! inducesan orientation of the disk which,
again by the right hand rule, we can represen by a eld of vectors normal
to the disk. To any other oriented lament crossingthe disk transversely we
assiate a crossingsign +1, if the crossingis in the direction of , and 1
otherwise. Following [40], the sum of crossingsignson the disk addsup to the
twist of the boundary lament ' t.

Applied to the schematic represenation of gure 11in gure 12, we conclude
that the two laments'!; ' ! for t < to each havetwist 1. After collision the
single remaining lament is untwisted. Our example therefore indicates that
one can hope, at best, for a consenation of the parity of the total twist.

8.6 Unknotting the tref oil knot by cr ossover collision

In the previous example two linked but unknotted laments merged into a
single lament. Also, the initial conditions were far from a long-term solution
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t = 0:00 t = 1:665
t= 4:278 4:881
t = 4:910 t = 10:598

Figure 11: Crossoer collision of two linked twisted laments at to = 4:90; Xo =
(0;0; 2:14) into a single untwisted lamen t.
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vt vt
Q@r @
Figure 12: A caricature of the crosswer collision of two linked, simply twisted

laments ' !; ' at t = to. Before collision, ead scroll ring possesses twist of 1.
After collision, the resulting scroll ring is untwisted, globally.

of the equations. In contrast, we now take a trefoil knot asan initial condition
that already exhibits fully developed scroll waves. We then rescalespace,which
is equivalent to a changeof di usion constarts. This brings the laments into
su cien tly closecontact for interaction.

The initial conditions for this autonomous example, A = 0, are the numerical
end state of a coarsersimulation on a domain ; = [ 25;25F, also running
on a numerical grid of 125° grid points. The initial condition for the coarser
simulation (starting attime t =  10)is createdusingthe polynomial p = zZ z3
with stereographicscaling factor c= 1=5in (8.12):

Z3 = 1=5(xy + ix);
(8.22) Z; = 1=Bxg+ i((x2+ x3+ x3)=5° 1=4);
' ud(x) = Re@Z? 2z3) clamped by (8.7);
ud(x) = 0:25Im(zZ2 Z3) clamped by (8.7):
At time t = 0, we stop the simulation, keepingthe samenumerical data at grid
points but rescalingthe domainto = [ 15;15F. This is the initial condition
att= 0.

Under discretization, crosswer collision from a trefoil knot to two linked rings
is obsened at

(8.23) to = 8:94; xo = (0;0; 9:28)

For illustration/animation see gure 13. Again we provide a caricature in
gure 14.

8.7 Discussion of examples

We conclude our seriesof exampleswith someremarks. Concerning example
8.3 of scroll ring annihilation we obsenethat only untwisted scroll rings can be
directly annihilated. This follows from the normal form of the corresponding
singularity with positive de nite quadratic form HPu; Puy jei at (to; Xo); see
section 1. More globally, it alsofollows from the obsenation that the shrinking
disk spannedby a circular lament near annihilation is not traversedby other
laments. Indeed a lament shrinking around another, large lament would
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t = 0:00 t = 4:905
t = 7985 t= 8914
t = 8:966 t = 12:597

Figure 13: Decomposing the trefoil knot into two linked twisted unknotted la-
ments by crossover collision at to = 8:94; xo = (0;0; 9:28). As explained in example
8.3, we seein gures 13, 14 how the trefoil knot with twist 3 decomposesinto two
unknotted, but mutually linked twisted laments, eac of twist 1.
MPEG-Mo vie [8.9MB,gzipped]
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(500

Figure 14: A caricature of the unknotting of the trefoil knot, showing the orien-
tations of all lamen ts.

require a three-dimensional kernel and hencea singularity of codimension at
least six.

We have not preseried an example for the processopposing annihilation:
the creation of a circular lament by a negative de nite quadratic form
hPui; Puy jei at (to;Xo). Sincethe de niteness required for Puyy je doesnot
predetermine the direction of 4 u, we could construct initial conditions ug(x)
corresponding to scroll ring creation at to = 0;xg 2 . Although we expect
scroll ring creation to be feasible also for large positive times to, we did not
obsene this phenomenonin our simulations so far.

Our results provide speci ¢ examplesof the \in ternal" collision type, which [31]
have described as topologically viable; furthermore, we show that crosswer
collision is the only generic way for scroll wavesto change their topological
linking type.

From a modeling point of view, experimental systemsmay require substartially
more than just two dependert variables u';u? for an adequate description by
parabolic reaction di usion systems. We repeat that theorem 4.2 predicts the
described two-variable phenomenato occur in any projection setting, where
only two combinations of the relevant quartities u®;::;;u™ are obsenable, for
exampleby color shading. We emphasizethat this obsenation neither requires,
nor correspondsto, a dynamic reduction of the full underlying reaction di usion
system by inertial manifolds or related techniques of dimension reduction.
Aiming at the ubiquitous wealth of phenomenaof pattern formation and pat-
tern transformation, our paper has detected and addressedjust a few elemen-
tary dynamic e ects peculiar to systemsof two equations in three spacedi-
mensions. Clearly, the theoretical framework supports signi cantly more com-
plicated spatio-temporal e ects than were preserted here. Applicabilit y hope-
fully also will reach far beyond the speci c motivating context of Belousor-
Zhabotinsky patterns or excitable media.
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