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Abstract. This paper discusses some examples showing that the crys-

talline cohomology of even very mildly singular projective varieties tends

to be quite large. In particular, any singular projective variety with at worst

ordinary double points has infinitely generated crystalline cohomology in

at least two cohomological degrees. These calculations rely critically on

comparisons between crystalline and derived de Rham cohomology.
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Fix an algebraically closed field k of characteristic p > 0 with ring of Witt vectors W .

Crystalline cohomology is a W -valued cohomology theory for varieties over k (see

[Gro68, Ber74]). It is exceptionally well behaved on proper smooth k-varieties: the

W -valued theory is finite dimensional [BO78], and the correspondingW [1/p]-valued

theory is a Weil cohomology theory [KM74] robust enough to support a p-adic proof

of the Weil conjectures [Ked06] (in conjunction with rigid cohomology to deal with

open or singular varieties).

Somewhat unfortunately, crystalline cohomology is often large and somewhat un-

wieldy outside the world of proper smooth varieties. For example, the crystalline

cohomology of a smooth affine variety of dimension > 0 is always infinitely gener-

ated as a W -module by the Cartier isomorphism (see Remark 2.4). Even worse, it

is not a topological invariant: Berthelot and Ogus showed [BO83, Appendix (A.2)]

that the 0th crystalline cohomology group of a fat point in A
2 has torsion (see also

Example 3.4). In this paper, we give more examples of such unexpected behaviour:

Theorem. Let X be a proper lci k-variety. Then the crystalline cohomology of X
is infinitely generated if any of the following conditions is satisfied:

(1) X has at least one isolated toric singularity, such as a node on a curve.

(2) X has at least one conical singularity of low degree, such as an ordinary

double point of any dimension.
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The statement above is informal, and we refer the reader to the body of this paper —

see examples 3.5, 3.6, 3.12, and 3.13 — for precise formulations. In contrast to the

Berthelot-Ogus example, our examples are reduced and lci. We do not know if these

calculations are indicative of deeper structure; see Question 0.1 below.

Our approach to the above calculation relies on Illusie’s derived de Rham cohomol-

ogy [Ill72]. This theory, which in hindsight belongs to derived algebraic geometry,

is a refinement of classical de Rham cohomology that works better for singular va-

rieties; the difference, roughly, is the replacement of the cotangent sheaf with the

cotangent complex. Theorems from [Bha12] show: (a) derived de Rham cohomol-

ogy agrees with crystalline cohomology for lci varieties, and (b) derived de Rham

cohomology is computed by a “conjugate” spectral sequence whose E2-terms come

from coherent cohomology on the Frobenius twist. These results transfer calculations

from crystalline cohomology to coherent cohomology, where it is much easier to lo-

calise calculations at the singularities (see the proof of Proposition 3.1). As a bonus,

this method yields a natural (infinite) increasing bounded below exhaustive filtration

with finite-dimensional graded pieces on the crystalline cohomology of any lci proper

variety.

We conclude by asking if finiteness properties of crystalline cohomology characterize

smooth varieties (somewhat analogously to Quillen’s conjecture [Avr99]):

Question 0.1. Do there exist any singular proper k-varieties with finite dimensional

crystalline cohomology over k? Do there exist any singular finite type k-algebras A
whose crystalline cohomology relative to k is finitely generated over the Frobenius

twist A(1) ⊂ A?

We do not know what to expect, and simply note here that derived de Rham theory

(see §1) shows that the sought-after examples cannot simultaneously be lci and admit

lifts to W2 compatible with Frobenius.

Organisation of this paper. In §1, we review the relevant results from derived

de Rham cohomology together with the necessary categorical background. Next, we

study (wedge powers of) the cotangent complex of some complete intersections in §2.

This analysis is used in §3.1 to provide examples of some singular projective varieties

(such as nodal curves, or lci toric varieties) whose crystalline cohomology is always

infinitely generated; all these examples admit local lifts to W2 where Frobenius also

lifts. Examples which are not obviously liftable (such as ordinary double points in

high dimensions) are discussed in §3.2.

Notation. Let k and W be as above, and set W2 = W/p2. For a k-scheme X , let

X(1) denote the Frobenius-twist of X ; we identify the étale topology on X and X(1).

We use Hn
crys(X/k) and Hn

crys(X/W ) to denote Berthelot’s crystalline cohomology

groups relative to k and W respectively. All sheaves are considered with respect to

the Zariski topology (unless otherwise specified), and all tensor products are derived.

We say that X lifts to W2 compatibly with Frobenius if there exists a flat W2-scheme

X lifting X , and a map X → X lifting the Frobenius map on X and lying over the

canonical Frobenius lift on W2. For fixed integers a ≤ b ∈ Z, we say that a complex

K over some abelian category has amplitude in [a, b] if Hi(K) = 0 for i /∈ [a, b] ⊂ Z.
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A complex K of abelian groups is connected (resp. simply connected) if Hi(K) = 0
for i > 0 (resp. for i ≥ 0). An infinitely generated module over a ring is one that is

not finitely generated. All gradings are indexed by Z unless otherwise specified. If

A is a graded ring, then A(−j) is the graded A-module defined by A(−j)i = Ai−j ;

we set M(−j) := M ⊗A A(−j) for any graded A-complex M . We use ∆ for the

category of simplices, and Ch(A) for the category of chain complexes over an abelian

category A.

Acknowledgements. I thank Johan de Jong, Davesh Maulik, and Mircea Mustaţǎ

for inspiring conversations. In particular, Example 3.5 was discovered in conversation

with de Jong and Maulik, and was the genesis of this paper. Both Pierre Berthelot

and Arthur Ogus had also independently calculated a variant of this example (unpub-

lished), and I thank them for their prompt response to email inquiries. I am further

grateful to the anonymous referee for references and comments.

1. REVIEW OF DERIVED DE RHAM THEORY

In this section, we summarise some structure results in derived de Rham theory that

will be relevant in the sequel. We begin by recalling in §1.1 some standard techniques

for working with filtrations in the derived category; this provides the language neces-

sary for the work in [Bha12] reviewed in §1.2.

1.1. Some homological algebra. In the sequel, we will discuss filtrations on

objects of the derived category. To do so in a homotopy-coherent manner, we use the

following model structure:

Construction 1.1. Fix a small category I , a Grothendieck abelian categoryB, and

set A = Fun(I,B). We endow Ch(B) with the model structure of [Lur11, Proposi-

tion 1.3.5.3]: the cofibrations are termwise monomorphisms, while weak equivalences

are quasi-isomorphisms. The category Fun(I,Ch(B)) = Ch(Fun(I,B)) = Ch(A)
inherits a projective model structure by [Lur09, Proposition A.2.8.2] where the fibra-

tions and weak equivalences are defined termwise. By [Lur09, Proposition A.2.8.7],

the pullback D(B) → D(A) induced by the constant map I → {1} has a left Quillen

adjoint D(A) → D(B) that we call a “homotopy-colimit over I”. In fact, exactly

the same reasoning shows: given a map φ : I → J of small categories, the pull-

back φ∗ : D(Fun(J,B)) → D(Fun(I,B)) induced by composition with φ has

a left Quillen adjoint φ! : D(Fun(I,B)) → D(Fun(J,B)) if Ch(Fun(I,B)) and

Ch(Fun(J,B)) are given the projective model structures as above; we often refer to

φ! as a “homotopy-colimit along fibres of φ.” The most relevant examples of φ for us

are: the projections ∆opp → {1}, ∆opp ×N → N and N → {1}.

Using Construction 1.1, we can talk about increasing filtrations on objects of derived

categories.

Construction 1.2. Let B be a Grothendieck abelian category, and let A :=
Fun(N,B), where N is the category associated to the poset N with respect to the

usual ordering. There is a homotopy-colimit functor F : D(A) → D(B) which

is left Quillen adjoint to the pullback D(B) → D(A) induced by the constant map
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N → {1}; we informally refer to an object K ∈ D(A) as an increasing (or N-

indexed) exhaustive filtration on the object F (K) ∈ D(B). There are also restriction

functors [n]∗ : D(A) → D(B) for each n ∈ N, and maps [n]∗ → [m]∗ for n ≤ m
coherently compatible with composition. For each n ∈ N, the cone construction de-

fines a functor grn : D(A) → D(B) and an exact triangle [n − 1]∗ → [n]∗ → grn
of functors D(A) → D(B); for a filtered object K ∈ D(B), we often use grn(K)
to denote grn applied to the specified lift of K to D(A). A map K1 → K2 in D(A)
is an equivalence if and only if [n]∗K1 → [n]∗K2 is so for all n ∈ N if and only if

grn(K1) → grn(K2) is so for all n ∈ N. Given a cochain complex K over B, the

association n 7→ τ≤nK defines an object of D(A) lifting the image of K ∈ D(B)
under F .

Remark 1.3. The “cone construction” used in Construction 1.2 to define grn needs

clarification: there is no functor Fun([0 → 1], D(B)) → D(B) which incarnates the

chain-level construction of the cone. However, the same construction does define a

functor D(Fun([0 → 1],B)) → D(B), which suffices for the above application (as

there are restriction functors D(A) → D(Fun([0 → 1],B)) for each map [0 → 1] →
N in N).

1.2. The derived de Rham complex and the conjugate filtration.

We first recall the definition:

Construction 1.4. For a morphism f : X → S of schemes, following [Ill72,

§VIII.2], the derived de Rham complex dRX/S ∈ Ch(Modf−1OS
) is defined as

the homotopy-colimit over ∆opp of the simplicial cochain complex Ω∗
P•/f−1OS

∈

Fun(∆opp,Ch(Modf−1OS
)), where P• is a simplicial free f−1OS-algebra resolu-

tion of OX . When S is an Fp-scheme, the de Rham differential is linear over

the pth-powers, so dRX/S can be viewed as an object of Ch(ModO
X(1)

), where

X(1) = X ×S,Frob S is the (derived) Frobenius-twist of X (which is the usual one if

f is flat).

The following theorem summarises the relevant results from [Bha12] about this con-

struction:

Theorem 1.5. Let X be a k-scheme. Then:

(1) The complex dRX/k ∈ Ch(ModO
X(1)

) comes equipped with a canonical

increasing bounded below separated exhaustive filtration Filconj• called the

conjugate filtration. The graded pieces are computed by

Cartieri : gr
conj
i (dRX/k) ≃ ∧iLX(1)/k[−i].

In particular, if X is lci, then Filconji (dRX/k) is a perfect OX(1) -complex for

all i.
(2) The formation of dRX/k and the conjugate filtration commutes with étale

localisation on X(1).

(3) There exists a canonical morphism

RΓ(X(1), dRX/k) → RΓcrys(X/k,O)
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that is an isomorphism when X is an lci k-scheme.

(4) If there is a lift of X to W2 together with a compatible lift of Frobenius, then

the conjugate filtration is split, i.e., there is an isomorphism

⊕i≥0 ∧
i LX(1)/k[−i] ≃ dRX/k

whose restriction to the ith summand on the left splits Cartieri.

Remark 1.6. Theorem 1.5 can be regarded as an analogue of the results of Cartier

(as explained in [DI87], say) and Berthelot [Ber74] to the singular case. In particular,

when X is quasi-compact, quasi-separated and lci, parts (1) and (3) of Theorem 1.5

together with the end of Remark 1.7 yield a “conjugate” spectral sequence

Ep,q
2 : Hp(X(1),∧qLX(1)/k) ⇒ Hp+q

crys (X/k).

In the sequel, instead of using this spectral sequence, we will directly use the filtration

on dRX/k and the associated exact triangles; this simplifies bookkeeping of indices.

Remark 1.7. We explain the interpretation of Theorem 1.5 using the language of

§1.1. Let B = Mod(OX(1)), and let A = Fun(N,B). The construction of the derived

de Rham complex dRX/k ∈ D(B) naturally lifts to an object E ∈ D(A) under F : if

P• → OX is the canonical free k-algebra resolution of OX , then Ω∗
P•/k

⊗
P

(1)
•

OX(1)

defines an object of D(Fun(∆opp ×N,B)) via (m,n) 7→
(

τ≤nΩ
∗
Pm/k

)

⊗
P

(1)
m

OX(1) ,

and its homotopy-colimit over ∆opp (i.e., its pushforward along D(Fun(∆opp ×
N,B)) → D(Fun(N,B))) defines the desired object E ∈ D(A). This construc-

tion satisfies [n]∗E ≃ Filconjn (dRX/k), so grn(E) ≃ grconjn (dRX/k) for all n ∈ N.

This lift E ∈ D(A) of dRX/k ∈ D(B) is implicit in any discussion of the con-

jugate filtration on dRX/k in this paper (as in Theorem 1.5 (1), for example). In

the sequel, we abuse notation to let dRX/k also denote E ∈ D(A). When X is

quasi-compact and quasi-separated, cohomology commutes with filtered colimits,

so RΓ(X(1), dRX/k) ≃ colimn RΓ(X
(1),Filconjn (dRX/k)). In particular, when re-

stricted to proper varieties, derived de Rham cohomology can be written as a filtered

colimit of (complexes of) finite dimensional vector spaces functorially in X .

2. SOME FACTS ABOUT LOCAL COMPLETE INTERSECTIONS

In order to apply Theorem 1.5 to compute crystalline cohomology, we need good con-

trol on (wedge powers of) the cotangent complex of an lci singularity. The following

lemma collects most of the results we will use in §3.1.

Lemma 2.1. Let (A,m) be an essentially finitely presented local k-algebra with an

isolated lci singularity at {m}. Let N = dimk(m/m2) be the embedding dimension.

Then:

(1) ∧nLA/k is a perfect complex for all n. For n ≥ N , ∧nLA/k can be rep-

resented by a complex of finite free A-modules lying between cohomological

degrees −n and −n+N with differentials that are 0 modulo m.

(2) For any n ≥ N , the complex ∧nLA/k has finite length cohomology groups.

(3) For any n > N , the group H−n+N (∧nLA/k) is non-zero.
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(4) For any n > N , there exists an integer 0 < i ≤ N such that

H−n+N−i(∧nLA/k) is non-zero.

(5) If dim(A) > 0 and n > N , then H−n(∧nLA/k) = 0, so the integer i in (4)

is strictly less than N .

Proof. Choose a polynomial algebra P = k[x1, . . . , xN ] and a map P → A such

that Ω1
P/k ⊗P A → Ω1

A/k is surjective. By comparing dimensions, the induced map

Ω1
P/k ⊗P A ⊗A A/m → Ω1

A/k ⊗A A/m is an isomorphism. Now consider the exact

triangle

LA/P [−1] → Ω1
P/k ⊗P A → LA/k.

The lci assumption on A and the choice of P ensure that LA/P [−1] is a free A-module

of some rank r. Since Spec(A) is singular at m, we must have r > 0. The previous

triangle then induces a (non-canonical) equivalence
(

A⊕r T
→ A⊕N

)

≃ LA/k.

The map T must be 0 modulo m as A⊕N → LA/k induces an isomorphism on H0

after reduction modulo m, so the above presentation yields an identification

LA/k ⊗A k ≃
(

k⊕r[1]
)

⊕ k⊕N .

Computing wedge powers gives

(*) ∧n (LA/k)⊗A k ≃ ⊕N
a=0

(

∧a (k⊕N )⊗ Γn−a(k⊕r)
)

[n− a],

where Γ∗ is the divided-power functor; here we use that ∧n(V [1]) = Γn(V )[n] for a

flat k-module V over a ring k (see [Qui70, §7]). We now show the desired claims:

(1) The perfectness of ∧nLA/k follows from the perfectness of LA/k. The de-

sired representative complex can be constructed as a Koszul complex on the

map T above (see the proof of Lemma 2.5 (4) below); all differentials will be

0 modulo m by functoriality since T is so.

(2) We must show that
(

∧n LA/k

)

p
= 0 for any p ∈ Spec(A) − {m} and n ≥

N . The functor ∧nL−/k commutes with localisation, so we must show that

∧nLAp/k = 0 for p and n as before, but this is clear: Ap is the localisation of

smooth k-algebra of dimension ≤ dim(A) < N for any such p.

(3) By (1), H−n+N(∧nLA/k) = 0 if and only if ∧nLA/k has amplitude in

[−n,−n+N−1]. However, in the latter situation, the complex∧nLA/k⊗Ak
would have no cohomology in degree−n+N , contradicting formula (*); note

that r ≥ 1 by the assumption that Spec(A) is singular at m.

(4) Assume the assertion of the claim is false. Then (3) shows that ∧nLA/k is

concentrated in a single degree, so ∧nLA/k ≃ M [−n + N ] for some fi-

nite length A-module M . By (1), M has finite projective dimension. The

Auslander-Buschbaum formula and the fact that A is Cohen-Macaulay then

show that the projective dimension of M is actually dim(A). Hence, M ⊗A k
has at most dim(A) + 1 non-zero cohomology groups. On the other hand,

formula (*) shows that ∧nLA/k ⊗A k has N +1 distinct cohomology groups.
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Hence, N ≤ dim(A), which contradicts the assumption that Spec(A) is sin-

gular at m.

(5) Set M := H−n(∧nLA/k), and assume M 6= 0. Then M has finite length by

(2), and occurs as the kernel of a map of free A-modules by (1). Non-zero fi-

nite length R-modules cannot be found inside free R-modules for any S1-ring

R of positive dimension, which is a contradiction since complete intersections

are S1. �

Remark 2.2. The assumption dim(A) > 0 is necessary in Lemma 2.1 (5). For

example, set A = k[ǫ]/(ǫp). Then N = dimk(m/m2) = 1, and LA/k ≃ A[1] ⊕ A.

Applying ∧n for n > 0, we get

∧n(LA/k) ≃ Γn(A)[n]⊕ Γn−1(A)[n − 1],

which certainly has non-zero cohomology in degree −n.

Using Lemma 2.1, we can show that the crystalline cohomology of an isolated lci

singularity is infinitely generated in a very strong sense:

Corollary 2.3. Let (A,m) be as in Lemma 2.1. Assume that A admits a lift to W2

compatible with Frobenius. Then

(1) Hi
crys(Spec(A)/k) ≃ ⊕j≥0H

0(Spec(A)(1),∧jLA(1)/k[i− j]) for all i.

(2) HN
crys(Spec(A)/k) is infinitely generated as an A(1)-module.

Proof. Note that H∗
crys(Spec(A)/k) is an A(1)-module since any divided-power

thickening of A is an A(1)-algebra.

(1) This follows from Theorem 1.5 (4) and the vanishing of higher quasi-coherent

sheaf cohomology on affines.

(2) This follows from Lemma 2.1 (3). �

Remark 2.4. Let us explain the phrase “strong sense” appearing before Corol-

lary 2.3. If A is an essentially smooth k-algebra, then H∗
crys(Spec(A)/k) is in-

finitely generated over k, but not over A(1): the Cartier isomorphism shows that

Hi
crys(Spec(A)/k) ≃ Ωi

A(1)/k
, which is a finite (and even locally free) A(1)-module.

It is this latter finiteness that also breaks down in the singular setting of Corollary 2.3.

We also record a more precise result on the wedge powers of the cotangent complex

for the special case of the co-ordinate ring of a smooth hypersurface; this will be used

in §3.2.

Lemma 2.5. Let A be the localisation at 0 of k[x0, . . . , xN ]/(f), where f is a homo-

geneous degree d polynomial defining a smooth hypersurface in P
N . Assume p ∤ d.

Then

(1) A is graded.

(2) The quotient M = A/( ∂f
∂x0

, . . . , ∂f
∂xN

) is a finite length graded A-module

whose non-zero weights j are contained in the interval 0 ≤ j ≤ (d− 2)(N +
1).

(3) The A-linear Koszul complex K := KA({
∂f
∂xi

}) of the sequence of partials is

equivalent to M ⊕M(−d)[1] as a graded A-complex.
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(4) For n > N , we have an equivalence of graded A-complexes

∧nLA/k[−n] ≃ M
(

(N+1)(d−1)−nd
)

[−N−1]⊕M
(

(N+1)(d−1)−nd−d
)

[−N ].

(5) Assume that N and d satisfy N(d−2) < d+2. Fix j and n with N < j < n.

Then all graded k-linear maps

∧nLA/k[−n] → ∧jLA/k[−j][1]

are nullhomotopic as graded k-linear maps.

Proof. Let S = k[x0, . . . , xN ] denote the polynomial ring. We note first the assump-

tion p ∤ d implies (by the Euler relation) that f lies in the ideal J(f) ⊂ S generated by

the sequence { ∂f
∂xi

} of partials. Since f defines a smooth hypersurface, the preceding

sequence cuts out a zero-dimensional scheme in S, and hence must be a regular se-

quence by Auslander-Buschbaum. In particular, each ∂f
∂xi

is non-zero of degree d− 1.

We now prove the claims:

(1) This is clear.

(2) Since f ∈ J(f), the quotient M is identified with S/J(f), so the claim

follows from [Voi07, Corollary 6.20].

(3) Consider the S-linear Koszul complex L := KS({
∂f
∂xi

}) of the sequence

of partials. Since the partials span a regular sequence in S, we have an

equivalence L ≃ S/J(f) ≃ A/J(f) ≃ M of graded S-modules. Now

the complex K is simply L ⊗S A ≃ M ⊗S A. Since M is already an

A-module, we get an identification K ≃ M ⊗A (A ⊗S A) as graded A-

modules, where the right hand side is given the A-module structure from

the last factor. The resolution
(

S(−d)
f
→ S

)

≃ A then shows that

K ≃ M ⊗A

(

A(−d)
0
→ A

)

≃ M ⊕M(−d)[1].

(4) Set L = (f)/(f2), E = Ω1
S/k ⊗S A, and c : L → E to be the map defined

by differentiation. Then the two-term complex defined by c is identified with

LA/k. Taking wedge powers for n > N then shows (see [KS04, Corollary

1.2.7], for example) that the complex

(**) Γn(L)⊗A∧
0(E) → Γn−1(L)⊗A∧

1(E) → · · · → Γn−(N+1)(L)⊗A∧
N+1(E)

computes ∧nLA/k[−n]; here the term on the left is placed in degree 0. Ex-

plicitly, the differential

Γi(L)⊗A ∧k(E) → Γi−1(L)⊗ ∧k+1(E)

is given by

γi(f)⊗ ω 7→ γi−1(f)⊗
(

c(f) ∧ ω
)

= (−1)k · γi−1(f)⊗
(

ω ∧ df
)

.

In particular, if we trivialise Γi(L) using γi(f), then this differential is

identified with left-multiplication by df in the exterior algebra ∧∗(E). We

leave it to the reader to check that the complex (**) above is isomorphic to

K
(

(N + 1)(d− 1)− nd
)

[−N − 1]; the rest follows from (3).
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(5) Let M ′ = M
(

(N + 1)(d− 1)
)

[−N − 1]. Then M ′ is, up to a shift, a graded

A-module whose weights lie in an interval size of (d− 2)(N +1) by (2). By

(4), we have

∧nLA/k[−n] ≃ M ′(−nd)⊕M ′(−nd− d)[1]

and

∧jLA/k[−j][1] ≃ M ′(−jd)[1]⊕M ′(−jd− d)[2].

Thus, we must check that all graded k-linear maps M ′(−nd−d) → M ′(−jd)
are nullhomotopic. Twisting, it suffices to show M ′ and M ′((n+1− j)d) do

not share a weight. If they did, then (n + 1 − j)d ≤ (d − 2)(N + 1). Since

j < n, this implies 2d ≤ (d − 2)(N + 1), i.e., d + 2 ≤ N(d − 2), which

contradicts the assumption. �

Remark 2.6. The assumption N(d − 2) < d + 2 in Lemma 2.5 (5) is satisfied in

exactly the following cases: N ≥ 5 with d = 2, N = 3, 4 with d ≤ 3, N = 2 with

d ≤ 5, and N = 1 with any d ≥ 1. In particular, an ordinary double point of any

dimension satisfies the assumptions of Lemma 2.5 in any odd characteristic. We also

remark that in this case (i.e., when d = 2), the proof of Lemma 2.5 (5) shows that the

space of graded k-linear maps ∧nLA/k[−n] → ∧jLA/k[−j][1] is simply connected.

Remark 2.7. Lemma 2.5 (5) only refers to space of graded k-linear maps

∧nLA/k[−n] → ∧jLA/k[−j][1], and not the space of such graded A-linear maps. In

particular, it can happen that a graded A-linear map ∧nLA/k[−n] → ∧jLA/k[−j][1]
is nullhomotopic as a graded k-linear map, but not as an A-linear map.

Theorem 1.5 will be used to control on the mod p crystalline cohomology of an lci

k-scheme. To lift these results to W , we will use the following base change isomor-

phism; see [BdJ11] for more details.

Lemma 2.8. Let X be a finite type lci k-scheme. Then the W -complexRΓcrys(X/W )
has finite amplitude, and there is a base change isomorphism

RΓcrys(X/W )⊗W k ≃ RΓcrys(X/k).

Proof. By a Mayer-Vietoris argument, we immediately reduce to the case where X =
Spec(A) is affine. In this case, let D be the p-adic completion of the divided power

envelope of a surjection P → A from a finite type polynomial W -algebra P . Then

RΓcrys(X/W ) is computed by

Ω∗
P/W ⊗P D.

Since this complex has finite amplitude, the first claim is proven. Next, if P0 = P/p,

and D0 is the divided power envelope of P0 → A, then RΓcrys(X/k) is computed by

Ω∗
P0/k

⊗P0 D0.

The claim now follows from the well-known fact that D is W -flat (since A is lci), and

D ⊗W k ≃ D0 (see [BBM82, Lemma 2.3.3] for a proof). �
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3. EXAMPLES

We come to the main topic of this paper: examples of singular proper lci k-varieties

with large crystalline cohomology. In §3.1, using lifts of Frobenius, we show that cer-

tain singular proper varieties (such as nodal curves, or singular lci toric varieties) have

infinitely generated crystalline cohomology. In §3.2, we show that a single ordinary

double point (or worse) on an lci proper variety forces crystalline cohomology to be

infinitely generated.

3.1. Frobenius-liftable examples. We start with a general proposition which

informally says: a proper lci k-variety has large crystalline cohomology if it contains

an isolated singular point whose étale local ring lifts to W2 compatibly with Frobenius.

Note that lci k-algebras always lift to W2, so this is really a condition on Frobenius.

Proposition 3.1. Let X be proper lci k-scheme. Assume:

(1) There is a closed point x ∈ X that is an isolated singular point (but there

could be other singularities on X).

(2) There is a lift to W2 of the Frobenius endomorphism of the henselian ring

Oh
X,x.

Set N = dimk(mx/m
2
x). Then there exists an integer 0 < i ≤ N such that:

(1) HN
crys(X/k) is infinitely generated over k.

(2) HN−i
crys (X/k) is infinitely generated over k.

(3) At least one of HN+1
crys (X/W )[p] and HN

crys(X/W )/p is infinitely generated

over k.

(4) At least one of HN+1−i
crys (X/W )[p] and HN−i

crys (X/W )/p is infinitely gener-

ated over k.

If dim(OX,x) > 0, then the integer i above can be chosen to be strictly less than N .

Proof. The desired integer i will be found in the proof of (2) below.

(1) Consider the exact triangle

FilconjN (dRX/k) → dRX/k → Q

in the category of OX(1) -complexes, where Q is defined as the homotopy-

cokernel. Theorem 1.5 (1) and the lci assumption on X show that

FilconjN (dRX/k) is a perfect complex on X(1), so Hi(X(1),FilconjN (dRX/k))
is a finite dimensional vector space for all i by properness. By Theorem 1.5

(3), to show that HN
crys(X/k) is infinitely generated, it suffices to show that

HN(X(1),Q) is an infinite dimensional k vector space. First, we show:

Claim 3.2. The natural map RΓ(X,Q) → Qx is a projection onto a sum-

mand as k-complexes.

Proof of Claim. Let j : U → X be an affine open neighbourhood of x such

that U has an isolated singularity at x, and let j′ : V = X − {x} ⊂ X . By

Theorem 1.5 (2), Q|U∩V ≃ 0 since U ∩ V is k-smooth. Hence, the Mayer-

Vietoris sequence for the cover {U, V } of X and the complex Q degenerates
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to show

RΓ(X,Q) ≃ RΓ(U,Q)⊕ RΓ(V,Q).

It now suffices to show that RΓ(U,Q) ≃ Qx. By Theorem 1.5 (1), Q|U ad-

mits an increasing bounded below separated exhaustive filtration with graded

pieces ∧nLU/k[−k] for n > N . Since cohomology commutes with fil-

tered colimits (as U is affine), RΓ(U,Q) also inherits such a filtration with

graded pieces computed by RΓ(U,∧nLU(1)/k[−k]) for n > N . Applying the

same analysis to Qx reduces us to checking that RΓ(U,∧nLU(1)/k[−n]) ≃

∧nL
O

(1)
X,x

/k
[−n] for n > N . But this is clear: for n > N , ∧nLU(1)/k[−n]

is a perfect complex on U (1) that is supported only at x and has stalk

∧nL
O

(1)
X,x

/k
[−n]. �

To compute the stalk Qx, define Q′ via the exact triangle

FilconjN (dROh
X,x

/k) → dROh
X,x

/k → Q
′.

Then Qx = Q
′ by Theorem 1.5 (2), the finite length property of Qx, and

the fact that Oh
X,x ⊗OX,x

M ≃ M for any finite length OX,x-module M .

Moreover, Q′ can be computed using the Frobenius lifting assumption and

Theorem 1.5 (4):

Qx ≃ Q
′ ≃ ⊕∞

n=N+1 ∧
n L

O
(1),h
X,x

/k
[−n].

Thus, to prove that HN (X(1),Q) is infinitely generated, it suffices to show

that HN(Qx) is infinitely generated. This follows from the formula above

and Lemma 2.1 (3).

(2) By combining the proof of (1) with Lemma 2.1 (4) and the pigeonhole prin-

ciple, one immediately finds an integer 0 < i ≤ N such that HN−i
crys (X/k) is

infinitely generated over k. Lemma 2.1 (5) shows that we can choose such an

i with i < N if dim(OX,x) > 0.

(3) The base change isomorphism from Lemma 2.8 gives a short exact sequence

0 → HN
crys(X/W )/p → HN

crys(X/k) → HN+1
crys (X/W )[p] → 0,

so the claim follows from (1).

(4) The same argument as (3) works using (2) instead of (1). �

We need the following elementary result on Frobenius liftings:

Lemma 3.3. Let A be a k-algebra that admits a lift to W2 together with a compatible

lift of Frobenius. Then the same is true for any ind-étale A-algebra B (such as the

henselisation A at a point).

Proof. This follows by deformation theory since LB/A = 0 for B as above. �

Specialising Proposition 3.1 leads to the promised examples.

Example 3.4. Let X = Spec(k[x]/xn) for some n > 1. Then H1
crys(X/k),

H0
crys(X/k), H1

crys(X/W )/p, and H1
crys(X/W )[p] are all infinitely generated. To
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see this, note first that Proposition 3.1 applies directly since X is a proper lci k-

scheme with a lift of Frobenius to W2. Moreover, since X can be realised as a sub-

scheme of A1, the only non-zero cohomology groups are H1
crys and H0

crys (over W ,

as well as over k). The rest follows directly from Proposition 3.1 once we know that

H0
crys(X/W ) = W . For this, note that H0

crys(X/W ) is the kernel of the differen-

tial dR : R → R · dx, where R = ̂W [x]〈xn〉 is the pd-envelope of the evident

closed immersion X →֒ Spec(W [x]). We may view R as the set of power series

f =
∑

i aix
i ∈ KJxK (where K = W [ 1p ]) such that ai · [i/e]! ∈ W for all i. In

particular, R is a subring of KJxK, so the kernel of dR is just the constant power series

(as K has characteristic 0), which shows H0
crys(X/W ) = W as desired.

Example 3.5. Let X be a proper nodal k-curve with at least one node. Then

H1
crys(X/k) and H2

crys(X/k) are infinitely generated. Moreover, H2
crys(X/W )/p,

and at least one of H1
crys(X/W )/p and H2

crys(X/W )[p], are infinitely generated.

Most of these claims follow directly from Proposition 3.1: a nodal curve is always

lci, and the henselian local ring at a node on X is isomorphic to the henselisa-

tion of k[x, y]/(xy) at the origin, which is a one-dimensional local ring that ad-

mits a lift to W2 compatible with Frobenius by Lemma 3.3. It remains to show that

H3
crys(X/W )[p] is finitely generated. As pointed out by de Jong, the stronger state-

ment H3
crys(X/W ) = 0 is true. If u : (X/W )crys → XZar is the natural map (i.e.,

u∗(F)(U ⊂ X) = Γ((U/W )crys,F|U )), then Riu∗OX/W,crys is non-zero only for

0 ≤ i ≤ 2, and R2u∗OX/W,crys is supported only at the nodes1. The rest follows from

the Leray spectral sequence as XZar has cohomological dimension 1.

Example 3.6. Let X be a proper lci k-scheme. Assume that x ∈ X(k) is an isolated

singular point (but there could be other singularities on X) such that Oh
X,x is toric of

embedding dimension N . Then HN
crys(X/k) is infinitely generated, and at least one of

HN
crys(X/W ) and HN+1

crys (X/W )[p] is infinitely generated over W . This follows from

Proposition 3.1 and Lemma 3.3 since toric rings lift to W2 compatibly with Frobenius

(use multiplication by p on the defining monoid). Some specific examples are: any

proper toric variety with isolated lci singularities, or any proper singular k-scheme of

dimension ≤ 3 with at worst ordinary double points.

Example 3.7. Let (E, e) be an ordinary elliptic curve over k, and let X be a proper

lci k-surface with a singularity at x ∈ X(k) isomorphic to the one on the affine cone

overE ⊂ P
2
k embedded via O(3[e]); for example, we could takeX to be the projective

cone on E ⊂ P
2
k. Then H3

crys(X/k) and one of H2
crys(X/k) or H1

crys(X/k) are

infinitely generated over k. This can be proven using Proposition 3.1 and the theory

of Serre-Tate canonical lifts. Since we prove a more general and shaper result in

Example 3.13, we leave details of this argument to the reader.

3.2. Conical examples. Our goal here is to show that the presence of an ordinary

double point forces crystalline cohomology to be infinitely generated. In fact, more

1Proof sketch: Replace the Zariski topology with the Nisnevich topology in the foundations of crys-

talline cohomology, and then use that every nodal curve is Nisnevich locally planar. This observation yields

a three-term de Rham complex computing the stalks of Ri
u∗OX/W,crys.
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generally, we show the same for any proper lci variety that has a singularity isomorphic

to the cone on a low degree smooth hypersurface. We start with an ad hoc definition.

Definition 3.8. A local k-algebra A is called a low degree cone if its henselisation

is isomorphic to the henselisation at the origin of the ring k[x0, . . . , xN ]/(f), where

f is a homogeneous degree d polynomial defining a smooth hypersurface in P
N such

that N(d − 2) < d + 2. The integer d is called the degree of this cone; if d = 2, we

also call A an ordinary double point. A closed point x ∈ X on a finite type k-scheme

X is called low degree conical singularity (respectively, an ordinary double point) if

O
h
X,x is a low degree cone (respectively, an ordinary double point).

We start by showing that the conjugate spectral sequence must eventually degenerate

for low degree cones:

Proposition 3.9. Let A be low degree cone of degree d. Assume p ∤ d. Then for

n > dim(A), the extensions

grconjn (dRA/k) → Filconjn−1(dRA/k)/Fil
conj
dim(A)(dRA/k)[1]

occurring in the conjugate filtration are nullhomotopic when viewed as k-linear ex-

tensions. In particular, there exist k-linear isomorphisms

Filconjn (dRA/k)/Fil
conj
dim(A)(dRA/k) ≃ ⊕n

j=dim(A)+1gr
conj
j (dRA/k).

splitting the conjugate filtration for any n > dim(A).

Proof. By replacing A with its henselisation and then using the étale invariance of

cotangent complexes and Theorem 1.5 (2), we may assume A is the localisation of

k[x0, . . . , xN ]/(f) at the origin for some homogeneous degree d polynomial f defin-

ing a smooth hypersurface in P
N . In particular, A is graded. Also, by functoriality,

the conjugate filtration is compatible with the grading. Recall that the extensions in

question arise from the triangles

Filconjn−1(dRA/k)/Fil
conj
dim(A)(dRA/k) →

→ Filconjn (dRA/k)/Fil
conj
dim(A)(dRA/k) → grconjn (dRA/k).

These triangles (and thus the corresponding extensions) are viewed as living in the

derived category of graded k-vector spaces. By induction, we have to show the fol-

lowing: assuming a graded splitting

sn−1 : Filconjn−1(dRA/k)/Fil
conj
dim(A)(dRA/k) ≃ ⊕n−1

j=dim(A)+1gr
conj
j (dRA/k)

of the conjugate filtration, there exists a graded splitting

sn : Filconjn (dRA/k)/Fil
conj
dim(A)(dRA/k) ≃ ⊕n

j=dim(A)+1gr
conj
j (dRA/k),

of the conjugate filtration compatible with sn−1. Chasing extensions, it suffices to

show: for dim(A) < j < n, all graded maps

grconjn (dRA/k) → grconjj (dRA/k)[1]

are nullhomotopic. This comes from Lemma 2.5 (5) and Theorem 1.5 (1). �
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Remark 3.10. An inspection of the proof of Proposition 3.9 coupled with Remark

2.6 shows that if A is an ordinary double point, then the isomorphism

Filconjn (dRA/k)/Fil
conj
dim(A)(dRA/k) ≃ ⊕n

j=dim(A)+1gr
conj
j (dRA/k)

is unique, up to non-unique homotopy. We do not know any applications of this

uniqueness.

Using Proposition 3.9, we can prove infiniteness of crystalline cohomology for some

cones:

Corollary 3.11. Let X be a proper lci k-scheme. Assume that there is low degree

conical singularity at a closed point x ∈ X with degree d and embedding dimension

N . If p ∤ d, then HN
crys(X/k) and HN−1

crys (X/k) are infinitely generated k-vector

spaces.

Proof. We combine the proof strategy of Proposition 3.1 with Proposition 3.9. More

precisely, following the proof of Proposition 3.1 (1), it suffices to show that Q′ is in-

finitely generated when regarded as a complex of k-vector spaces. Now Q′ admits an

increasing bounded below separated exhaustive filtration with graded pieces given by

grconjn (dR
Oh

X,x
/k) for n > N . By Proposition 3.9, there is a (non-canonical) isomor-

phism

Q
′ ≃ ⊕n>N ∧n L

O
(1),h
X,x

/k
[−n].

The rest follows from Lemma 2.5 (4) (note that embedding dimension in loc. cit. is

N + 1, so we must shift by 1). �

We can now give the promised example:

Example 3.12. Let X be any proper lci variety that contains an ordinary double

point x ∈ X(k) of embedding dimension N with p odd; for example, we could take

X to be the projective cone over a smooth quadric in P
N−1. Then HN

crys(X/k) and

HN−1
crys (X/k) are infinitely generated by Corollary 3.11.

All examples given so far have rational singularities, so we record an example that is

not even log canonical.

Example 3.13. Let X be any proper lci surface that contains a closed point

x ∈ X(k) with Oh
X,x isomorphic to the henselisation at the vertex of the cone over a

smooth curve C ⊂ P
2 of degree ≤ 5. If p ≥ 7, then H3

crys(X/k) and H2
crys(X/k) are

infinitely generated by Corollary 3.11.

Remark 3.14. We do not know whether the ordinary double point from Example

3.12 admits a lift to W2 compatible with Frobenius in arbitrary dimensions; similarly

for the cones in Example 3.13 (except for ordinary elliptic curves).
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