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Pulling Apart 2–Spheres in 4–Manifolds

Rob Schneiderman and Peter Teichner

Received: November 5, 2012

Revised: May 1, 2014

Communicated by Ursula Hamenstädt

Abstract. An obstruction theory for representing homotopy classes
of surfaces in 4–manifolds by immersions with pairwise disjoint im-
ages is developed, using the theory of non-repeating Whitney towers.
The accompanying higher-order intersection invariants provide a ge-
ometric generalization of Milnor’s link-homotopy invariants, and can
give the complete obstruction to pulling apart 2–spheres in certain
families of 4–manifolds. It is also shown that in an arbitrary simply
connected 4–manifold any number of parallel copies of an immersed
2–sphere with vanishing self-intersection number can be pulled apart,
and that this is not always possible in the non-simply connected set-
ting. The order 1 intersection invariant is shown to be the complete
obstruction to pulling apart 2–spheres in any 4–manifold after taking
connected sums with finitely many copies of S2 × S2; and the order
2 intersection indeterminacies for quadruples of immersed 2–spheres
in a simply-connected 4–manifold are shown to lead to interesting
number theoretic questions.
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1 Introduction

We study the question of whether a map A : Σ → X is homotopic to a map
A′ such that A′(Σi) are pairwise disjoint subsets of X , where Σ = ∐iΣi is the
decomposition into connected components. In this case, we will say that A can
be pulled apart.
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942 Schneiderman and Teichner

This question arises as a precursor to the embedding problem – whether or not
A is homotopic to an embedding. It also arises in the study of configuration
spaces X(m) of m distinct ordered points in X , where elements of πnX

(m)

are represented by m disjoint maps of n–spheres to X , and one might ask
whether or not a given element of the m-fold product

∏m
πnX lies in the

image of the map πnX
(m) →

∏m
πnX induced by the canonical projections

p1, . . . , pm : X(m) → X .
For example, let Σ = ∐iS

n be a disjoint union of n–spheres and X be a
connected 2n–manifold. For n ≥ 2, there are Wall’s well known intersection
numbers λ(Ai, Aj) ∈ Z[π1X ], where Ai : Sn → X are the components of A
[33]. These are obstructions for representing A by an embedding, and the main
geometric reason for the success of surgery theory is that, for n ≥ 3, they
are (almost) complete obstructions: The only missing ingredient is Wall’s self-
intersection invariant µ, a quadratic refinement of λ. However, for the question
of making the Ai(S

n) disjoint, it is necessary and sufficient that λ(Ai, Aj) = 0
for i 6= j. We abbreviate this condition on intersection numbers by writing
λ0(A) = 0.
As expected, the condition λ0(A) = 0 is not sufficient for pulling apart A if
n = 2, but this failure is surprisingly subtle: Given only two maps A1, A2 :
S2 → X4 with λ(A1, A2) = 0, one can pull them apart by a clever sequence
of finger moves and Whitney moves, see [19] and Section 1.1 below. However,
this is not true any more for three (or more) 2–spheres in a 4–manifold. In
[30] we defined an additional invariant λ1(A) which takes values in a quotient
of Z[π1X × π1X ] and was shown to be the complete obstruction to pulling
apart a triple A = A1, A2, A3 : S2 → X of 2–spheres mapped into an arbitrary
4–manifold X with vanishing λ0(A). For trivial π1X the analogous obstruction
was defined earlier in [25, 34].
In this paper, we extend this work to an arbitrary number of 2–spheres (and
other surfaces – see Remark 16) in 4–manifolds. The idea is to apply a variation
of the theory of Whitney towers as developed in [3, 4, 5, 6, 29, 30, 31] to address
the problem. Before we introduce the relevant material on Whitney towers, we
mention a couple of new results that can be stated without prerequisites.
Throughout this paper the letter m will usually denote the number of surface
components to be pulled apart, and from now on the letters Σ and X will be
used to denote surfaces and 4–manifolds, respectively. The distinction between
a map of a surface and its image in X will frequently be disregarded in the
interest of brevity.

Pulling apart parallel 2–spheres

The following theorem is discussed and proven in Section 6:

Theorem 1 If X is a simply connected 4–manifold and A : ∐mS2 → X con-
sists of m copies of the same map A0 : S2 → X of a 2–sphere with trivial normal
Euler number, then A can be pulled apart if and only if [A0] ∈ H2(X ;Z) has
vanishing homological self-intersection number [A0] · [A0] = 0 ∈ Z.
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Note that each transverse self-intersection of A0 gives rise to m2 −m intersec-
tions among the m parallel copies A, not counting self-intersections, see Fig-
ure 1. As a consequence, there cannot be a simple argument to pull A apart.
In fact, the analogous statement fails for non-simply connected 4–manifolds,
see Example 6.2.

Figure 1: One self-intersection leads to m2 −m intersections among m copies.

Stably pulling apart 2–spheres

We say that surfaces A : Σ → X can be stably pulled apart if A can be pulled
apart after taking the connected sum of X with finitely many copies of S2×S2.
The invariants λ0 and λ1 are unchanged by this stabilization, and in this setting
they give the complete obstruction to pulling apart m maps of 2–spheres:

Theorem 2 A : ∐mS2 → X can be stably pulled apart if and only if λ0(A) =
0 = λ1(A).

This result also holds when the stabilizing factors S2 × S2 are replaced by
any simply-connected closed 4-manifolds (other than S4). It also holds when
components of A are maps of disks. The invariant λ1 is described precisely in
sections 2 and 8; and the proof of Theorem 2 is given in section 7.2. (Note that
X is not required to be simply connected in Theorem 2.) We remark that the
stronger invariant τ1(A) of [30], together with Wall’s self-intersection invariant
τ0(A), is the complete obstruction to stably embedding A, see [29, Cor.1].

Remark 3 The question of pulling apart surfaces in 4–manifolds is indepen-
dent of category. More precisely, any connected 4–manifold can be given a
smooth structure away from one point [12] and any continuous map can be
approximated arbitrarily closely by a smooth map. As a consequence, we can
work in the smooth category and as a first step, we can always turn a map
A : Σ2 → X4 into a generic immersion. We will also assume that surfaces are
properly immersed, i.e. A(∂Σ) ⊂ ∂X with the interior of Σ mapping to the
interior of X, and that homotopies fix the boundary.

1.1 Pulling apart two 2–spheres in a 4–manifold

To motivate the introduction of Whitney towers into the problem, it is im-
portant to understand the basic case of pulling apart two maps of 2–spheres
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944 Schneiderman and Teichner

A1, A2 : S2 → X . Wall’s intersection pairing associates a sign and an element
of π1X to each transverse intersection point between the surfaces, and the
vanishing of λ(A1, A2) implies that all of these intersections can be paired by
Whitney disks. As illustrated in Figures 2 and 3, these Whitney disks can be
used to pull apart A1 and A2 by first pushing any intersection points between
A2 and the interior of a Whitney disk W(1,2) down into A2, and then using
the Whitney disks to guide Whitney moves on A1 to eliminate all intersections
between A1 and A2 (details in [19]).
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Figure 2: Pushing an intersection between A2 and the interior of a Whitney
disk W(1,2) down into A2 only creates (two) self-intersections in A2.
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Figure 3: A Whitney move guided by the Whitney disk of Figure 2. The
intersection between A1 and the interior of the Whitney disk becomes a pair
of self-intersections of A1 after the Whitney move.

1.2 Pulling apart three or more 2–spheres

Note that for a triple of spheres one cannot use the method of figures 2 and
3 to eliminate an intersection point between one sphere and a Whitney disk
that pairs intersections between the other two spheres. Such “higher-order”
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intersections were used in [30] to define the invariant λ1(A) discussed above.
In this case, the procedure for separating the surfaces involves constructing
“second order”Whitney disks which pair the intersections between surfaces and
Whitney disks. The existence of these second order Whitney disks allows for
an analogous pushing-down procedure which only creates self-intersections and
cleans up the Whitney disks enough to pull apart the surfaces by an ambient
homotopy.
Building on these ideas, we will describe an obstruction theory in terms of
non-repeating Whitney towers W built on properly immersed surfaces in X ,
and non-repeating intersection invariants λn(W) taking values in quotients of
the group ring of (n + 1) products of π1X . The order n of the non-repeating
Whitney tower W determines how many of the underlying surfaces at the
bottom of the tower can be made pairwise disjoint by a homotopy, and the
vanishing of λn(W) is sufficient to find an order n+ 1 non-repeating Whitney
tower.
Non-repeating Whitney towers are special cases of the Whitney towers defined
in [31] (see also [3, 5, 6, 7, 27, 28, 30]). An introduction to these notions is
sketched here with details given in Section 2. We work in the smooth oriented
category, with orientations usually suppressed.

1.3 Whitney towers and non-repeating Whitney towers

Consider A : Σ = ∐iΣ
2
i → X4 where the surface components Σi are spheres or

disks (and see Remark 3 for initial clean-ups on A). To begin our obstruction
theory, we say that A forms a Whitney tower of order 0, and define the order
of each properly immersed connected surface Ai : Σi → X to be zero.
If all the singularities (transverse intersections) of A can be paired by Whitney
disks then we get a Whitney tower of order 1 which is the union of these order
1 Whitney disks and the order 0 Whitney tower.
If we only have Whitney disks pairing the intersections between distinct order
0 surfaces Ai : Σi → X of A, then we get an order 1 non-repeating Whitney
tower.

If it exists, an order 2 Whitney tower also includes Whitney disks (of order 2)
pairing all the intersections between the order 1 Whitney disks and the order
0 surfaces. An order 2 non-repeating Whitney tower only requires second order
Whitney disks for intersections between an Ai and Whitney disks pairing Aj

and Ak, where i, j and k are distinct. As explained in Section 2, all of this
generalizes to higher order, including the distinction between non-repeating
and repeating intersection points, however things get more subtle as differ-
ent “types” of intersections of the same order can appear (parametrized by
isomorphism classes of unitrivalent trees).
An order n Whitney tower has Whitney disks pairing up all intersections of
order less than n, and an order n non-repeating Whitney tower is only required
to have Whitney disks pairing all non-repeating intersections of order less than
n (sections 2.1 and 2.4). So “order n non-repeating” is a weaker condition than
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“order n”.
The underlying order 0 surfaces A in a Whitney tower W are said to support
W , and we say that A admits an order n Whitney tower if A is homotopic (rel
boundary) to A′ supporting W of order n.

1.4 Pulling apart surfaces in 4–manifolds

As a first step towards determining whether or not A : Σ → X can be pulled
apart, we have the following translation of the problem into the language of
Whitney towers. This is the main tool in our theory:

Theorem 4 Let m be the number of components of Σ. Then A : Σ → X can
be pulled apart if and only if A admits a non-repeating Whitney tower of order
m− 1.

The existence of a non-repeating Whitney tower of sufficient order encodes
“pushing down” homotopies and Whitney moves which lead to disjointness,
as will be seen in the proof of Theorem 4 given in Section 3. It will be clear
from the proof of Theorem 4 that for 1 < n < m the existence of a non-
repeating Whitney tower of order n implies that any n + 1 of the order 0
surfaces Ai : Σi → X can be pulled apart.

1.5 Higher-order intersection invariants

An immediate advantage of this point of view is that the higher-order intersec-
tion theory of [31] can be applied inductively to increase the order of a Whitney
tower or, in some cases, detect obstructions to doing so. The main idea is that
to each unpaired intersection point p in a Whitney tower W on A one can asso-
ciate a decorated unitrivalent tree tp which bifurcates down from p through the
Whitney disks to the order 0 surfaces Ai (Figure 4, also Figure 12). The order
of p is the number of trivalent vertices in tp. The univalent vertices of tp are
labeled by the elements i ∈ {1, . . . ,m} from the set indexing the Ai. The edges
of tp are decorated with elements of the fundamental group π := π1X of the
ambient 4–manifold X . Orientations of A and X determine vertex-orientations
and a sign sign(p) ∈ {±} for tp, and the order n intersection invariant τn(W)
of an order n Whitney tower W is defined as the sum

τn(W) :=
∑

sign(p) · tp ∈ Tn(π,m)

over all order n intersection points p in W . Here Tn(π,m) is a free abelian
group generated by order n decorated trees modulo relations which include
the usual antisymmetry (AS) and Jacobi (IHX) relations of finite type the-
ory (Figure 5). Restricting to non-repeating intersection points in an order n
non-repeating Whitney tower W , yields the analogous order n non-repeating
intersection invariant λn(W):

λn(W) :=
∑

sign(p) · tp ∈ Λn(π,m)
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which takes values in the subgroup Λn(π,m) < Tn(π,m) generated by order n
trees whose univalent vertices have distinct labels. We refer to Definition 18
for more precise statements. In the following we shall sometimes suppress the
number m of components of Σ and just write Λn(π).

Remark 5 We will show in Lemma 19 that Λn(π,m) is isomorphic to the
direct sum of

(

m
n+2

)

n!-many copies of the integral group ring Z[π(n+1)] of the

(n + 1)-fold cartesian product π(n+1) = π × π × · · · × π. Note that Λn(π,m)
is trivial for n ≥ m− 1 since an order n unitrivalent tree has n+ 2 univalent
vertices. For π left-orderable, T1(π,m) is computed in [29, Sec.2.3.1]. For π
trivial, Tn(m) := Tn(1,m) is computed in [7] for all n, and in [5] the torsion
subgroup of Tn(m) (which is only 2-torsion) is shown to correspond to obstruc-
tions to “untwisting” Whitney disks in twisted Whitney towers in the 4–ball.
The absence of torsion in Λn(π,m) corresponds to the fact that such obstruc-
tions are not relevant in the non-repeating setting since a boundary-twisting
operation [12, Sec.1.3] can be used to eliminate non-trivially twisted Whitney
disks at the cost of only creating repeating intersections.

In the case n = 0, our notation λ0(A) ∈ Λ0(π) just describes Wall’s Hermitian
intersection pairing λ(Ai, Aj) ∈ Z[π] (see section 2.6).
For n = 1, we showed in [30] that if λ0(A) = 0 then taking λ1(A) := λ1(W) in
an appropriate quotient of Λ1(π) defines a homotopy invariant of A (indepen-
dent of the choice of non-repeating Whitney tower W). See sections 2.7 and
8.2.
The main open problem in this intersection theory is to determine for n ≥ 2
the largest quotient of Λn(π) for which λn(W) only depends on the homotopy
class of A : Σ → X . Even for n = 1, this quotient will generally depend on A,
unlike Wall’s invariants λ0.

1.6 The geometric obstruction theory

In Theorem 2 of [31] it was shown that the vanishing of τn(W) ∈ Tn(π) implies
that A admits an order n + 1 Whitney tower. The proof of this result uses
controlled geometric realizations of the relations in Tn(π), and the exact same
constructions (which are all homogeneous in the univalent labels – see Section 4
of [31]) give the analogous result in the non-repeating setting:

Theorem 6 If A : Σ → X admits a non-repeating Whitney tower W of order n
with λn(W) = 0 ∈ Λn(π), then A admits an order (n+1) non-repeating Whitney
tower. �

Combining Theorem 6 with Theorem 4 above yields the following result, which
was announced in [31, Thm.3]:

Corollary 7 If Σ has m components and A : Σ → X admits a non-repeating
Whitney tower W of order m− 2 such that λm−2(W) = 0 ∈ Λm−2(π), then A
can be pulled apart. �
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Thus, the problem of deciding whether or not any given A can be pulled apart
can be attacked inductively by determining the extent to which λn(W) only
depends on the homotopy class of A.

The next two subsections describe settings where λn(W) ∈ Λn(π) does indeed
tell the whole story. For Whitney towers in simply connected 4–manifolds, we
drop π from the notation, writing Λn(m), or just Λn if the number of order 0
surfaces is understood.

1.7 Pulling apart disks in the 4–ball

A link-homotopy of an m-component link L = L1 ∪ L2 ∪ · · · ∪ Lm in the 3–
sphere is a homotopy of L which preserves disjointness of the link components,
i.e. during the homotopy only self-intersections of the Li are allowed. In order
to study “linking modulo knotting”, Milnor [23] introduced the equivalence re-
lation of link-homotopy and defined his (non-repeating) µ-invariants, showing
in particular that a link is link-homotopically trivial if and only if it has all
vanishing µ-invariants. In the setting of link-homotopy, Milnor’s algebraically
defined µ-invariants are intimately connected to non-repeating intersection in-
variants as implied by the following result, proved in Section 4 using a new
notion of Whitney tower-grope duality (Proposition 25).

Theorem 8 Let L be an m-component link in S3 bounding D : ∐mD2 →
B4. If D admits an order n non-repeating Whitney tower W then λn(W) ∈
Λn(m) does not depend on the choice of W. In fact, λn(W) contains the same
information as all non-repeating Milnor invariants of length n + 2 and it is
therefore a link-homotopy invariant of L.

We refer to Theorem 24 for a precise statement on how Milnor’s invariants are
related to λn(L) := λn(W) ∈ Λn(m). Together with Corollary 7 we get the
following result:

Corollary 9 An m-component link L is link-homotopically trivial if and only
if λn(L) vanishes for all n = 0, 1, 2, . . . ,m− 1. �

This recovers Milnor’s characterization of links which are link-homotopically
trivial [23], and uses the fact that L bounding disjointly immersed disks into
B4 is equivalent to L being link-homotopically trivial [13, 14].

Remark 10 A precise description of the relationship between general (repeat-
ing) Whitney towers on D and Milnor’s µ-invariants (with repeating indices
[24]) for L is given in [6]. Our current discussion is both easier and harder
at the same time: We only make a statement about non-repeating Milnor in-
variants, a subset of all Milnor invariants, but as an input we only use a non-
repeating Whitney tower, an object containing less information then a Whitney
tower.
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1.8 Pulling apart 2–spheres in special 4–manifolds

The relationship between Whitney towers and Milnor’s link invariants can be
used to describe some more general settings where the non-repeating intersec-
tion invariant λn(W) ∈ Λn of a non-repeating Whitney tower gives homotopy
invariants of the underlying order 0 surfaces. Denote by XL the 4–manifold
which is gotten by attaching 0-framed 2–handles to the 4–ball along a link L
in the 3–sphere. The following theorem is proved in Section 5:

Theorem 11 If a link L bounds an order n Whitney tower on disks in the
4–ball, then:

(i) Any map A : ∐mS2 → XL of 2–spheres into XL admits an order n
Whitney tower.

(ii) For any order n non-repeating Whitney tower W supported by A :
∐mS2 → XL, the non-repeating intersection invariant λn(A) := λn(W) ∈
Λn(m) is independent of the choice of W.

Note that the number m of 2–spheres need not be equal to the number of
components of the link L. Using the realization techniques for Whitney towers
in the 4–ball described in [5, Sec.3], examples of such A realizing any value in
Λn(m) can be constructed.

Corollary 12 If a link L bounds an order n Whitney tower on disks in the
4–ball, then:

(i) A : ∐mS2 → XL admits an order n + 1 non-repeating Whitney tower if
and only if λn(A) = 0 ∈ Λn(m).

(ii) In the case m = n+ 2, we have that A : ∐mS2 → XL can be pulled apart
if and only if λm−2(A) = 0 ∈ Λm−2(m). �

The “if” parts of the statements in Corollary 12 follow from Theorem 6 and
Corollary 7 above. The “only if” statements follow from the fact that the second
statement of Theorem 11 implies that λn(A) := λn(W) ∈ Λn(m) only depends
on the homotopy class of A, as explained in Proposition 14 below. In this set-
ting, Kojima [20] had identified (via Massey products) the first non-vanishing
Milnor invariant µL(123 · · ·m) of an m-component link L as an obstruction to
pulling apart the collection of m 2–spheres determined by L in XL.

1.9 Indeterminacies from lower-order intersections.

The sufficiency results of Theorem 6 and Corollary 7 show that the groups
Λn(π) provide upper bounds on the invariants needed for a complete obstruc-
tion theoretic answer to the question of whether or not A : Σ → X can be
pulled apart. And as illustrated by Theorem 8 and Theorem 11 above, there
are settings in which λn(W) ∈ Λn only depends on the homotopy class (rel
boundary) of A, sometimes giving the complete obstruction to pulling A apart.
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In general however, more relations are needed in the target group to account
for indeterminacies in the choices of possible Whitney towers on a given A.
In particular, for Whitney towers in a 4–manifold X with non-trivial second
homotopy group π2X , there can be indeterminacies which correspond to tubing
the interiors of Whitney disks into immersed 2–spheres. Such INT intersection
relations are, in principle, inductively manageable in the sense that they are
determined by strictly lower-order intersection invariants on generators of π2X .
For instance, the INT1 relations in the target groups of the order 1 invariants
τ1 and λ1 of [25, 30] are determined by the order 0 intersection form on π2X .
However, as we describe in Section 8, higher-order INT relations can be non-
linear, and if one wants the resulting target to carry exactly the obstruction to
the existence of a higher-order tower then interesting subtleties already arise
in the order 2 setting.
It is interesting to note that these INT indeterminacies are generalizations
of the Milnor-invariant indeterminacies in that they may involve intersections
between 2–spheres other than the Ai. The Milnor link-homotopy invariant
indeterminacies come from sub-links because there are no other essential 2-
spheres in XL. For instance, the proof of Theorem 2 exploits the hyperbolic
summands of the stabilized intersection form on π2. We pause here to note an-
other positive consequence of the intersection indeterminacies before returning
to further discussion of the well-definedness of the invariants.

1.9.1 Casson’s separation lemma

The next theorem shows that in the presence of algebraic duals for the order 0
surfaces Ai, all our higher-order obstructions vanish. This recovers the follow-
ing result of Casson (proved algebraically in the simply-connected setting [2])
and Quinn (proved using transverse spheres [10, 26]):

Theorem 13 If λ(Ai, Aj) = 0 for all i 6= j, and there exist 2–spheres Bi :
S2 → X such that λ(Ai, Bj) = δij for all i, then Ai can be pulled apart.

Here λ denotes Wall’s intersection pairing with values in Z[π], and δij ∈ {0, 1}
is the Kronecker delta. Note that there are no restrictions on intersections
among the dual spheres Bi. Theorem 13 is proved in section 7.1.

1.9.2 Homotopy invariance of higher-order intersection invari-
ants

Our proposed program for pulling apart 2–spheres in 4–manifolds involves refin-
ing Theorem 6 by formulating (and computing) the relations INTn(A) ⊂ Λn(π)
so that λn(A) := λn(W) ∈ Λn(π)/INTn(A) is a homotopy invariant of A (inde-
pendent of the choice of order n non-repeating Whitney tower W) which repre-
sents the complete obstruction to the existence of an order n+1 non-repeating
tower supported by A. Via Theorem 4 this would provide a procedure to deter-
mine whether or not A can be pulled apart. The following observation clarifies
what needs to be shown:
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Proposition 14 If for a fixed immersion A the value of λn(W) ∈
Λn(π)/INTn(A) does not depend the choice of order n non-repeating Whitney
tower W supported by A, then λn(A) := λn(W) ∈ Λn(π)/INTn(A) only
depends on the homotopy class of A. �

To see why this is true, observe that, up to isotopy, any generic regular ho-
motopy from A to A′ can be realized as a sequence of finitely many finger
moves followed by finitely many Whitney moves. Since any Whitney move has
a finger move as an “inverse”, there exists A′′ which differs from each of A
and A′ by only finger moves (up to isotopy). But a finger move is supported
near an arc, which can be assumed to be disjoint from the Whitney disks in a
Whitney tower, and the pair of intersections created by a finger move admit a
local Whitney disk; so any Whitney tower on A or A′ gives rise to a Whitney
tower on A′′ with the same intersection invariant.
Thus, the problem is to find INTn(A) relations which give independence of
the choice of W for a fixed immersion A, and can be realized geometrically so
that λn(W) ∈ INTn(A) implies that A bounds an order n + 1 non-repeating
Whitney tower. We conjecture that all these needed relations do indeed cor-
respond to lower-order intersections involving 2–spheres, and hence deserve to
be called “intersection” relations. Although such INTn(A) relations are com-
pletely understood for n = 1 (see 8.2 below), a precise formulation for the n = 2
case already presents interesting subtleties. We remark that for maps of higher
genus surfaces there can also be indeterminacies (due to choices of boundary
arcs of Whitney disks) which do not come from 2–spheres; see [29] for the order
1 invariants of immersed annuli.
Useful necessary and sufficient conditions for pulling apart four or more 2–
spheres in an arbitrary 4–manifold are not currently known. In Section 8 we
examine the intersection indeterminacies for the relevant order 2 non-repeating
intersection invariant λ2 in the simply connected setting, and show how they
can be computed as the image in Λ2(4) ∼= Z2 of a map whose non-linear part is
determined by certain Diophantine quadratic equations which are coupled by
the intersection form on π2X (see section 8.3.6). Carrying out this computation
in general raises interesting number theoretic questions, and has motivated
work of Konyagin and Nathanson in [21].
We’d like to pose the following challenge: Formulate the INTn(A) relations for
n ≥ 2 which make the following conjecture precise and true:

Conjecture 15 A : ∐mS2 → X can be pulled apart if and only if λn(A) :=
λn(W) vanishes in Λn(π)/INTn(A) for n = 0, 1, 2, 3, . . . ,m− 2.

2 Whitney towers

This section contains a summary of relevant Whitney tower notions and no-
tations as described in more detail in [3, 5, 6, 27, 28, 29, 30, 31]. Recall our
blurring of the distinction between a map A : Σ → X and its image, which
leads us to speak of A as a “collection” of immersed connected surfaces in X .
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Remark 16 Although this paper focuses on pulling apart A in the case where
the components Σi of Σ are spheres and/or disks, much of the discussion is
also relevant to the π1-null setting; i.e. the Σi are compact connected surfaces
of arbitrary genus and the component maps Ai : Σi → X induce trivial maps
π1Σi → π1X on fundamental groups.

2.1 Whitney towers

The following formalizes the discussion from the introduction by inductively
defining Whitney towers of order n for each non-negative integer n.

Definition 17

• A surface of order 0 in a 4–manifold X is a properly immersed connected
compact surface (boundary embedded in the boundary of X and interior
immersed in the interior of X). A Whitney tower of order 0 in X is a
collection of order 0 surfaces.

• The order of a (transverse) intersection point between a surface of order
n1 and a surface of order n2 is n1 + n2.

• The order of a Whitney disk is n + 1 if it pairs intersection points of
order n.

• For n ≥ 0, a Whitney tower of order n+1 is a Whitney tower W of order
n together with Whitney disks pairing all order n intersection points of
W. These order n+ 1 Whitney disks are allowed to intersect each other
as well as lower-order surfaces.

The Whitney disks in a Whitney tower are required to be framed [5, 12, 30]
and have disjointly embedded boundaries. Each order 0 surface in a Whitney
tower is also required to be framed, in the sense that its normal bundle in X
has trivial (relative) Euler number. Interior intersections are assumed to be
transverse. A Whitney tower is oriented if all its surfaces (order 0 surfaces
and Whitney disks) are oriented. Orientations and framings on any boundary
components of order 0 surfaces are required to be compatible with those of the
order 0 surfaces. A based Whitney tower includes a chosen basepoint on each
surface (including Whitney disks) together with a whisker (arc) for each surface
connecting the chosen basepoints to the basepoint of X.

We will assume our Whitney towers are based and oriented, although whiskers
and orientations will usually be suppressed from notation. The collection A of
order 0 surfaces in a Whitney tower W is said to support W , and we also say
that W is a Whitney tower on A. A collection A of order 0 surfaces is said
to admit an order n Whitney tower if A is homotopic (rel boundary) to A′

supporting an order n Whitney tower.
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2.2 Trees for Whitney disks and intersection points.

In this paper, a tree will always refer to a finite oriented unitrivalent tree,
where the (vertex) orientation of a tree is given by cyclic orderings of the ad-
jacent edges around each trivalent vertex. The order of a tree is the number
of trivalent vertices. Univalent vertices will usually be labeled from the set
{1, 2, 3, . . . ,m} indexing the order 0 surfaces, and we consider trees up to iso-
morphisms preserving these labelings. A tree is non-repeating if its univalent
labels are distinct. When X is not simply connected, edges will be oriented
and labeled with elements of π1X . A root of a tree is a chosen univalent vertex
(usually left un-labeled).

We start by considering the case where X is simply connected:

Formal non-associative bracketings of elements from the index set are used as
subscripts to index surfaces in a Whitney tower W ⊂ X , writing Ai for an
order 0 surface (dropping the brackets around the singleton i), W(i,j) for an
order 1 Whitney disk that pairs intersections between Ai and Aj , and W((i,j),k)

for an order 2 Whitney disk pairing intersections between W(i,j) and Ak, and so
on, with the ordering of the bracket components determined by an orientation
convention described below (2.3). When writing W(I,J) for a Whitney disk
pairing intersections betweenWI andWJ , the understanding is that if a bracket
I is just a singleton i then the surfaceWI = Wi is just the order zero surface Ai.
Note that both Whitney disks and order 0 surfaces are referred to as “surfaces
in W”.

Via the usual correspondence between non-associative brackets and rooted
trees, this indexing gives a correspondence between surfaces in W and rooted
trees: To a Whitney disk W(I,J) we associate the rooted tree corresponding to
the bracket (I, J). We use the same notation for rooted trees and brackets, so
the bracket operation corresponds to the rooted product of trees which glues
together the root vertices of I and J to a single vertex and sprouts a new rooted
edge from this vertex. With this notation the order of a Whitney disk WK is
equal to the order of (the rooted tree) K.

The rooted tree (I, J) associated to W(I,J) can be considered to be a subset
of W , with its root edge (including the root edge’s trivalent vertex) sitting
in the interior of W(I,J), and its other edges bifurcating down through lower-
order Whitney disks. The unrooted tree tp associated to any intersection point
p ∈ W(I,J)∩WK is the inner product tp = 〈 (I, J),K 〉 gotten by identifying the
roots of the trees (I, J) and K to a single non-vertex point. Note that tp also
can be considered as a subset of W , with the edge of tp containing p a sheet-
changing path connecting the basepoints of W(I,J) and WK (see Figure 4).

If X is not simply connected, then the edges of the just-described trees are
decorated by elements of π1X as follows: Considering the trees as subsets
of W , each edge of a tree is a sheet-changing path connecting basepoints of
adjacent surfaces of W . Choosing orientations of these sheet-changing paths
determines elements of π1X (using the whiskers on the surfaces) which are
attached as labels on the correspondingly oriented tree edges.
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Note that the notation for trees is slightly different in the older papers [27, 31],
where the rooted tree associated to a bracket I is denoted t(I), and the rooted
and inner products are denoted by ∗ and · respectively. The notation of this
paper agrees with the more recent papers [4, 5, 6, 7, 8, 29].

W

W

W

W

I

J

(I,J)

K

K

J I

p

pt
+

-

Figure 4: A local picture of the tree tp = 〈(I, J),K〉 associated to p ∈ W(I,J) ∩
WK near a trivalent vertex adjacent to the edge of tp passing through an
unpaired intersection point p in a Whitney tower W . On the left tp is pictured
as a subset of W , and on the right as an abstract labeled vertex-oriented tree.
In a non-simply connected 4–manifold X the edges of tp would also be oriented
and labeled by elements of π1X (as in Figure 5 below).

2.3 Orientation conventions

Thinking of the tree I associated to a Whitney disk WI as a subset of W , it can
be arranged that the trivalent orientations of I are induced by the orientations
of the corresponding Whitney disks: Note that the pair of edges which pass
from a trivalent vertex down into the lower-order surfaces paired by a Whitney
disk determine a “corner” of the Whitney disk which does not contain the other
edge of the trivalent vertex. If this corner contains the negative intersection
point paired by the Whitney disk, then the vertex orientation and the Whitney
disk orientation agree. Our figures are drawn to satisfy this convention.
This “negative corner” convention (also used in [5, 6]), which differs from the
positive corner convention used in [3, 31], turns out to be compatible with the
usual commutator conventions, for instance in the setting of Milnor invariants
(see Figure 13).

2.4 Non-repeating Whitney towers

Whitney disks and intersection points are called non-repeating if their associ-
ated trees are non-repeating. This means that the univalent vertices are labeled
by distinct indices (corresponding to distinct order 0 surfaces, i.e. distinct con-
nected components of A). A Whitney tower W is an order n non-repeating
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Whitney tower if all non-repeating intersections of order (strictly) less than n
are paired by Whitney disks. In particular, if W is an order n Whitney tower
then W is also an order n non-repeating Whitney tower. In a non-repeating
Whitney tower repeating intersections of any order are not required to be paired
by Whitney disks.

2.5 Intersection invariants

For a group π, denote by Tn(m,π) the abelian group generated by order n
(decorated) trees modulo the relations illustrated in Figure 5.

_
+   =  0IHX:

JI J I

  =  

 g =    =  

0+

HOL:OR:

AS:

g

g
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c
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a

a

a a
a

e
e

e

a

ab

b

b
b b

b

b

1

Figure 5: The relations in Tn(π,m): IHX (Jacobi), AS (antisymmetry), OR
(orientation), HOL (holonomy). These are ‘local’ pictures, meaning that the
unlabeled univalent vertices extend to fixed decorated subtrees in each equa-
tion. For instance, in the right-hand term of the HOL relation only the three
visible edge decorations are multiplied by the element g, corresponding to a
change of whisker on a Whitney disk at the indicated trivalent vertex. All
vertex-orientations are induced from a fixed orientation of the plane; in par-
ticular, the two terms in the AS relation only differ by the orientation at the
indicated trivalent vertex, where the two edges extending to the subtrees I and
J have been interchanged.

Note that when π is the trivial group, the edge decorations (orientations and
π-labels) disappear, and the relations reduce to the usual AS antisymmetry
and IHX Jacobi relations of finite type theory (compare also the decorated
graphs of [15]). All the relations are homogeneous in the univalent labels, and
restricting the generating trees to be non-repeating order n trees defines the
subgroup Λn(m,π) < Tn(m,π). (See sections 2.1 and 3 of [31] for explanations
of these relations.)
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Definition 18 For an order n (oriented) Whitney tower W in X, the order
n intersection invariant τn(W) is defined by summing the signed trees ±tp over
all order n intersections p ∈ W:

τn(W) :=
∑

sign(p) · tp ∈ Tn(π).

Here π = π1X; and sign(p) = ±, for p ∈ WI ∩ WJ , is the usual sign of an
intersection between the oriented Whitney disks WI and WJ .

If W is an order n non-repeating Whitney tower, the order n non-repeating
intersection invariant λn(W) is analogously defined by

λn(W) :=
∑

sign(p) · tp ∈ Λn(π)

where the sum is over all order n non-repeating intersections p ∈ W.

2.6 Order 0 intersection invariants

The order 0 intersection invariants τ0 and λ0 for A : ∐mS2 → X carry the same
information as Wall’s [33] Hermitian intersection form µ, λ: The generators in
τ0(A) ∈ T0(π,m) with both vertices labeled by the same index i correspond
to Wall’s self-intersection invariant µ(Ai). For µ(Ai) to be a homotopy (not
just regular homotopy) invariant, one must also mod out by a framing relation
which kills order 0 trees labeled by the trivial element in π (see [5] for higher-
order framing relations). Wall’s homotopy invariant Hermitian intersection
pairing λ(Ai, Aj) ∈ Z[π] for i 6= j corresponds to λ0(A) ∈ Λ0(π,m).

The vanishing of these invariants corresponds to the order 0 intersections com-
ing in canceling pairs (after perhaps a homotopy of A), so A admits an order
1 Whitney tower if and only if τ0(A) = 0 ∈ T0(π,m), and admits an order 1
non-repeating Whitney tower if and only if λ0(A) = 0 ∈ Λ0(π,m).

2.7 Order 1 intersection invariants

It was shown in [30], and for π1X = 1 and m = 3 in [25, 34], that for A :
∐mS2 → X admitting an order 1 Whitney tower (resp. non-repeating Whitney
tower) W , the order 1 intersection invariant τ1(A) := τ1(W) (resp. order 1 non-
repeating intersection invariant λ1(A) := λ1(W)) is a homotopy invariant of A,
if taken in an appropriate quotient of T1(π,m) (resp. Λ1(π,m)). The relations
defining this quotient are determined by order 0 intersections between the Ai

and immersed 2–spheres in X . These are the order 1 intersection relations
INT1 which are described in [30] (in slightly different notation) and below in
Section 8 (for λ1). As remarked in the introduction, for τ1 there are also
framing relations, but there are no framing relations for λn (for all n) because
Whitney disks can always be framed by the boundary-twisting operation [12,
Sec.1.3] which creates only repeating intersections.
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From [30], we have that A admits an order 2 Whitney tower (resp. order 2 non-
repeating Whitney tower) if and only if τ1(A) (resp. λ1(A)) vanishes. In par-
ticular, λ1(A1, A2, A3) ∈ Λ1(π, 3)/INT1 is the complete obstruction to pulling
apart three order 0 surfaces with vanishing λ0(A1, A2, A3).

2.8 Order n intersection invariants

As was shown in Theorem 2 of [31], for A admitting a Whitney tower W
of order n, if τn(W) = 0 ∈ Tn(π) then A admits a Whitney tower of order
n+1. The proof of this result proceeds by geometrically realizing the relations
in the target group of the intersection invariant in a controlled manner, so
that one can convert “algebraic cancellation” of pairs of trees to “geometric
cancellation” of pairs of points (paired by next-order Whitney disks). The exact
same arguments work restricting to the non-repeating case to prove Theorem 6
of the introduction: For A admitting a non-repeating Whitney tower W of
order n, if λn(W) = 0 ∈ Λn(π) then A admits a non-repeating Whitney tower
of order n+1. Beyond this “sufficiency” result, it is not known for n ≥ 2 what
additional relations INTn ⊂ Λn(π) would also make the vanishing of λn(W)
in the quotient a necessary condition for A to admit a non-repeating Whitney
tower of order n+ 1, as discussed in 1.9.2 of the introduction.

2.9 The groups Λn

The groups Λn(π,m) provide upper bounds for the order n non-repeating ob-
struction theory, and hence by Corollary 7 also for the obstructions to pulling
apart surfaces. The following result describes the structure of Λn(π,m):

Lemma 19 Λn(π,m) is isomorphic (as an additive abelian group) to the
(

m
n+2

)

n!-fold direct sum of the integral group ring Z[πn+1] of the (n + 1)-fold

cartesian product πn+1 = π × π × · · · × π.

Proof: First consider the case where π is trivial. Since the relations in Λn(m)
are all homogenous in the univalent labels, Λn(m) is the direct sum of subgroups
Λn(n + 2) over the

(

m
n+2

)

choices of n + 2 of the m labels. (As noted in the
introduction, Λn(π,m) is trivial for n ≥ m−1 since an order n unitrivalent tree
has n + 2 univalent vertices.) We will show that each of these subgroups has
a basis given by the n! distinct simple non-repeating trees shown in Figure 6
(ignoring the edge decorations for the moment), where an order n tree is simple
if it contains a geodesic of edge-length n+ 1.
For a given choice of n+2 labels, placing a root at the minimal-labeled vertex
of each order n tree gives an isomorphism from Λn(n + 2) to the subgroup of
non-repeating length n+1 brackets in the free Lie algebra (over Z) on the other
labels (with AS and IHX relations going to skew-symmetry relations and Jacobi
identities). This “reduced” free Lie algebra (see also 4.1 below) is known to
have rank n!, as explicitly described in [22, Thm.5.11] (also implicitly contained
in [23, Sec.4–5]), so the trees in Figure 6 are linearly independent if they span.
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To see that the trees in Figure 6 form a spanning set, first observe that for a
given choice of n+2 labels, each order n non-repeating tree t has a distinguished
geodesic edge path Tt from the minimal-label univalent vertex to the maximal-
label univalent vertex. For an orientation-inducing embedding of t in the plane,
it can be arranged that all the sub-trees of t emanating from Tt lie on a preferred
side of Tt by applying AS relations at the trivalent vertices of Tt as needed.
Then, by repeatedly applying IHX relations (replacing the left-most I-tree by
the difference of the H-tree and X-tree in the IHX relation of Figure 5) at
trivalent vertices of distinguished geodesics to reduce the order of the emanating
sub-trees one eventually gets a linear combination of simple non-repeating trees
as in Figure 6 which is uniquely determined by t. (To see how the IHX relation
reduces the order of subtrees emanating from a distinguished geodesic, observe
that if the central edge of the I-tree in an IHX relation is the first edge of such
a subtree, then the corresponding emanating subtrees in the H-tree and X-tree
both have order decreased by one.)
In the case of non-trivial π, the group elements decorating the edges of the
simple trees can always be (uniquely) normalized to the trivial element on all
but n+ 1 of the edges as shown in Figure 6 (by applying HOL relations from
Figure 5 and working from the minimal towards the maximal vertex label). �

i

i i i i i

min imax
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1

1

g
2

2
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3

3

g
n+1

g
n-1

n-1

g
n
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Figure 6: A simple order n tree with minimal- and maximal-labeled vertices
connected by a length n+1 geodesic; 1 ≤ imin < imax ≤ m, and imin < ik < imax

for 1 ≤ k ≤ n. Vertex orientations are induced by the planar embedding. By
the HOL relations, all but n+1 of the edge decorations can be set to the trivial
element in π (indicated by the ‘empty-labeled’ edges in the figure).

2.10 Some properties of Whitney towers

For future reference, we note here some elementary properties of Whitney tow-
ers and their intersection invariants.
Let A : Σ → X support an order n Whitney tower W ⊂ X , where Σ has m
connected components Σi. We will consider the effects on τn(W) of chang-
ing the order 0 surfaces Ai : Σi → X of A by the operations of re-indexing,
including parallel copies, taking internal sums, switching orientations, and dele-
tions; all of which preserve the property that A supports an order n Whitney
tower. We will focus on the case where X is simply connected, which will be
used in Section 5. (Analogous properties hold in the non-simply connected set-
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ting, although when taking internal sums (2.10.3) some care would be needed
in keeping track of the effect on the edge decorations due to choices of arcs
guiding the sums.)

2.10.1 Re-indexing order 0 surfaces

For A : Σ → X the natural indexing of the order 0 surfaces of W is by π0Σ. In
practice, we fix an identification of π0Σ with the label set {1, 2, . . . ,m}, and the
effect of changing this identification is given by the corresponding permutation
of the univalent labels on all the trees representing τn(W).

2.10.2 Parallel Whitney towers

Suppose A is extended to A′ by including a parallel copy Am+1 of the last order
0 surface Am of A. Recall from Definition 17 that order 0 surfaces have trivial
(relative) normal Euler numbers, so each self-intersection of Am will give rise
to a single self-intersection of Am+1 and a pair of intersections between Am+1

and Am; and each intersection between Am and any Ai, for i 6= m, will give rise
to a single intersection between Am+1 and Ai; and no other intersections in A′

will be created. By the splitting procedure of [31, Lem.13] (also [27, Lem.3.5])
it can be arranged that all Whitney disks in W are embedded and contained
in standard 4–ball thickenings of their trees. Since the Whitney disks are all
framed, W can be extended to an order n Whitney towerW ′ on A′ by including
parallel copies of the Whitney disks in W as illustrated by Figure 7. This new
Whitney tower W ′ can be constructed in an arbitrarily small neighborhood of
W , and the intersection invariants are related in the following way.
Define δ : Tn(m) → Tn(m + 1) to be the homomorphism induced by the map
which sends a generator t having r-many m-labeled univalent vertices to the 2r-
term sum over all choices of replacing the label m by the label (m+ 1). Then
τn(W

′) = δ(τn(W)). (In the non-simply connected setting, group elements
decorating the edges would be preserved by taking parallel whiskers.)
Via re-indexing, the effect of including a parallel copy of any ith order 0 surface
can be described by analogous relabeling maps δi, and iterating this procedure
constructs an order n Whitney tower near W on any number of parallel copies
of any order 0 surfaces of A, with the resulting change in τn(W) described by
compositions of the δi maps.

2.10.3 Internal sums

Suppose A′ is formed from A by taking the ambient connected sum of Am−1

with Am in X (or by joining ∂Am−1 to ∂Am with a band in ∂X), so that A′ has
m−1 components. Since it may be assumed that the interior of the arc guiding
the sum is disjoint from W , it is clear that A′ bounds an order n Whitney tower
W ′ all of whose Whitney disks and singularities are identical to W . Then
τn(W

′) = σ(τn(W)) ∈ Tn(m − 1), where the map σ : Tn(m) → Tn(m − 1)
is induced by the relabeling map on generators which changes all m-labeled
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Figure 7: Extending a Whitney tower using parallel Whitney disks: An un-
paired intersection point p ∈ W(I,J) ∩ WK in a Whitney tower on A, where
each of I, J and K contain exactly one occurrence of the index m, gives rise to
eight unpaired intersections in four Whitney disks in the new Whitney tower
on A′, formed from A by including a parallel copy of Am. The dotted oval
loops (left) bound neighborhoods of the Whitney arcs in the opaque I ′ sheet
which have been perturbed into a nearby time coordinate along with the two
corresponding translucent Whitney disks (right).

univalent vertices to (m − 1)-labeled univalent vertices. (In the non-simply
connected setting, group elements decorating all edges would be preserved if
the guiding arc together with the whiskers on Am−1 and Am formed a null-
homotopic loop.)
Via re-indexing, the effect of summing any Ai with any Aj (j 6= i) is described
by the analogous map σij , and for iterated internal sums the resulting inter-
section invariant is described by compositions of the σij maps.

2.10.4 Switching order 0 surface orientations

As explained in [31, Sec.3], the orientation of A determines the vertex-
orientations of the trees representing τn(W) up to AS relations, via our above
convention (2.3). The effect on τn(W) of switching the orientation of an order
0 surface Ai of A is described as follows.
Define si : Tn(m) → Tn(m) to be the automorphism induced by the map which
sends a generator t to (−1)i(t)t, where again i(t) denotes the multiplicity of the
univalent label i in t. Then if W ′ is a reorientation of W which is compatible
with a reversal of orientation of Ai, then we have τn(W

′) = si(τn(W)).
The effect on the intersection invariant of reorienting any number of order 0
surfaces of A is described by compositions of the si maps.

2.10.5 Deleting order 0 surfaces

The result A′ of deleting the last order 0 surface Am of A supports an order
n Whitney tower W ′ formed by deleting those Whitney disks from W which
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involve Am; that is, deleting any Whitney disk whose tree has at least one
univalent vertex labeled by m. We have τn(W

′) = e(τn(W)), where the ho-
momorphism e : Tn(m) → Tn(m − 1) is induced by the map which sends a
generator t to zero if m appears as a label in t, and is the identity otherwise.
Via re-indexing, the effect of deleting any Ai can be described by analogous
maps ei, and the change in τn(W) due to multiple deletions of order 0 surfaces
is described by compositions of the ei.

2.10.6 Canceling parallels

We note here the following easily-checked lemma, which will be used in Sec-
tion 5:

Lemma 20 The composition σji′ ◦ σi′i′′ ◦ si′′ ◦ δi′ ◦ δi is the identity map on
Tn(m). �

Lemma 20 describes the effect on the intersection invariant that corresponds
to including two parallel copies A′

i and A′′
i of Ai, switching the orientation

on A′′
i , then recombining A′

i and A′′
i by an internal sum into a single i′th

component, and then internal summing this combined i′th component into any
jth component of A. (Note that applying the analogous sequence of operations
to a link obviously preserves the isotopy class of the link.)

3 Proof of Theorem 4

We want to show that m connected surfaces Ai : Σi → X can be pulled apart
if and only if they admit an order m− 1 non-repeating Whitney tower.

Proof: The “only if” direction follows by definition, since disjoint order 0 sur-
faces form a non-repeating Whitney tower of any order. So let W be a non-
repeating Whitney tower of order m − 1 on A1, A2, . . . , Am. If W contains
no Whitney disks, then the Ai are pairwise disjoint. In case W does contain
Whitney disks, we will describe how to use finger moves and Whitney moves
to eliminate the Whitney disks of W while preserving the non-repeating order
m− 1.

First note that W contains no unpaired non-repeating intersections: All non-
repeating intersections of order < m−1 are paired by definition; and since trees
of order ≥ m − 1 have ≥ m + 1 univalent vertices, all intersections of order
greater than or equal to m − 1 in any Whitney tower on m order 0 surfaces
must be repeating intersections.

Now consider a Whitney disk W(I,J) in W of maximal order. If W(I,J) is clean
(the interior of W(I,J) contains no singularities) then do the W(I,J)-Whitney
move on either WI or WJ . This eliminates W(I,J) (and the corresponding
canceling pair of intersections between WI and WJ) while creating no new
intersections, hence preserves the order of the resulting non-repeating Whitney
tower which we continue to denote by W .
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If any maximal order Whitney disk W(I,J) in W is not clean, then the singulari-
ties in the interior of W(I,J) are exactly a finite number of unpaired intersection
points, all of which are repeating. (SinceW(I,J) is of maximal order, the interior
of W(I,J) contains no Whitney arcs; and W contains no unpaired non-repeating
intersections, as noted above.) So, for any p ∈ W(I,J) ∩ WK , at least one of
(I,K) or (J,K) is a repeating bracket. Assuming that (I,K), say, is repeating,
push p off of W(I,J) down into WI by a finger move (Figure 8). This creates
only a pair of repeating intersections between WI and WK . After pushing down
all intersections in the interior of W(I,J) by finger moves in this way, do the
clean W(I,J)-Whitney move on either WI or WJ . Repeating this procedure
on all maximal order Whitney disks eventually yields the desired order m− 1
non-repeating Whitney tower (with no Whitney disks) on order 0 surfaces A′

i.
The A′

i are regularly homotopic to the Ai; the pushing-down finger moves will
have created pairs of self-intersections in the pairwise disjointly immersed A′

i.
�

WK

push-down

W

W

I

p

(I,J)

WJ WJ

WK

WI

Figure 8:

4 Proof of Theorem 8

Consider a link L = L1 ∪ L2 ∪ · · · ∪ Lm ⊂ S3 that bounds an order n
non-repeating Whitney tower W on immersed disks in the 4–ball. We will
prove Theorem 8 by relating λn(W) to Milnor’s length n + 2 link-homotopy
µ-invariants of L in Theorem 24, showing in particular that λn(L) := λn(W) ∈
Λn(m) only depends on the link-homotopy class of L (and not on the Whitney
tower W).

The essential idea is that W can be used to compute the link longitudes as
iterated commutators in Milnor’s nilpotent quotients of the fundamental group
of the link complement. The proof uses a new result, Whitney tower-grope
duality, which describes certain class n+ 2 gropes that live in the complement
of an order n Whitney tower in any 4–manifold (Proposition 25). After fixing
notation for the first-non-vanishing Milnor invariants of L in section 4.1, we give
the explicit identification of them with λn(W) in Theorem 24 of section 4.2.
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4.1 Milnor’s link-homotopy µ-invariants

This subsection briefly reviews and fixes notation for the first non-vanishing
non-repeating µ-invariants of a link. See any of [1, 16, 17, 23] for details.
For a group G normally generated by elements g1, g2, . . . , gm, the Milnor group
of G (with respect to the gi) is the quotient of G by the subgroup normally
generated by all commutators between gi and ghi := hgih

−1, so we kill the
elements

[gi, g
h
i ] = gig

h
i g

−1
i g−h

i

for 1 ≤ i ≤ m, and all h ∈ G. One can prove (e.g. [16, Lem.1.3]) by induction
on m that this quotient is nilpotent and (therefore) generated by g1, . . . , gm.
The Milnor group M(L) of an m-component link L is the Milnor group of
the fundamental group of the link complement π1(S

3 r L) with respect to a
generating set of meridional elements. Specifically, M(L) has a presentation

M(L) = 〈x1, x2, . . . , xm | [ℓi, xi], [xj , x
h
j ]〉

where each xi is represented by a meridian (one for each component), and the
ℓi are words in the xi determined by the link longitudes. The Milnor group
M(L) is the largest common quotient of the fundamental groups of all links
which are link homotopic to L. Since M(L) only depends on the conjugacy
classes of the meridional generators xi, it only depends on the link L (and no
base-points are necessary).
A presentation for the Milnor group of the unlink (or any link-homotopically
trivial link) corresponds to the case where all ℓi = 1, and Milnor’s µ-invariants
(with non-repeating indices) compareM(L) with this free Milnor group M(m)
by examining each longitudinal element in terms of the generators correspond-
ing to the other components. Specifically, mapping x±1

i to ±Xi induces a
canonical isomorphism

M(m)(n)/M(m)(n+1)
∼= RLn(m)

from the lower central series quotients to the reduced free Lie algebra RL(m) =
⊕m

n=1RLn(m), which is the quotient of the free Z-Lie algebra on the Xi by the
relations which set an iterated Lie bracket equal to zero if it contains more than
one occurrence of a generator. This isomorphism takes a product of length n
commutators in distinct xi to a sum of length n Lie brackets in distinct Xi. In
particular, RLn(m) = 0 for n > m.
Let Mi(L) denote the quotient of M(L) by the relation xi = 1. If the element
in Mi(L) determined by the longitude ℓi lies in the (n + 1)th lower central
subgroup Mi(L)(n+1) for each i, then we have isomorphisms:

M(L)(n+1)/M(L)(n+2)
∼= M(m)(n+1)/M(m)(n+2)

∼= RL(n+1)(m).

Via the usual identification of non-associative bracketings and binary trees,
RL(n+1)(m) can be identified with the abelian group on order n rooted non-
repeating trees modulo IHX and antisymmetry relations as in Figure 5 (with π
trivial). This identification explains the subscripts in the following definition:
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Definition 21 The elements µi
n(L) ∈ RL

i
(n+1)(m) determined by the longi-

tudes ℓi are the non-repeating Milnor-invariants of order n. Here RL
i(m) is

the reduced free Lie algebra on the m− 1 generators Xj, for j 6= i.

This definition of non-repeating µ-invariants was originally given by Milnor [23].
He later expressed the elements µi

n(L) in terms of integers µL(i, k1, . . . , kn+1),
which are the coefficients of Xk1

· · ·Xkn+1
in the Magnus expansion of ℓi. We

note that our order n corresponds to the originally used length n+2 (of entries
in µL).
By construction, these non-repeating µ-invariants depend only on the link-
homotopy class of the link L. We have only defined order n µ-invariants as-
suming that the lower-order µ-invariants vanish, which will turn out to be
guaranteed by the existence of an order n non-repeating Whitney tower.

4.2 Mapping from trees to Lie brackets

For each i, define a map

ηin : Λn(m) → RL
i
(n+1)(m)

by sending a tree t which has an i-labeled univalent vertex vi to the iterated
bracketing determined by t with a root at vi. Trees without an i-labeled vertex
are sent to zero. For example, if t is an order 1 Y -tree with univalent labels
1, 2, 3, and cyclic vertex orientation (1, 2, 3), then η11(t) = [X2, X3], and η31(t) =
[X1, X2], and η21(t) = [X3, X1]. Note that the IHX and AS relations in Λn(m)
go to the Jacobi and skew-symmetry relations in RL

i
(n+1)(m), so the maps ηin

are well-defined.

Lemma 22
m
∑

i=1

ηin : Λn(m) −→ ⊕m
i=1RL

i
(n+1)(m)

is a monomorphism.

Proof: Putting an i-label in place of the root in a tree corresponding to a Lie
bracket in RL

i
(n+1)(m) gives a left inverse to ηin. In fact, for the top degree

n + 2 = m, this is an inverse because every index i appears exactly once in a
tree t of order n = m− 2. For arbitrary n, it is easy to check that composing
the sum of these left inverse maps with

∑m
i=1 η

i
n is just multiplication by n+2

on Λn(m). Since Λn(m) is torsion-free by Lemma 19, it follows that
∑m

i=1 η
i
n

is injective. �

Remark 23 The monomorphism
∑m

i=1 η
i
n fits into the bottom row of a com-

mutative diagram:

Tn(m) //
ηn
//

��
��

⊕m
i=1L(n+1)(m)

��
��

Λn(m) // // ⊕m
i=1RL

i
(n+1)(m)
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Here the upper row is relevant for repeating Milnor invariants as explained in
[4, 5]. The injectivity of the top horizontal map ηn, defined by Jerry Levine, is
much harder to show and is the central result of [7] (implying that Tn(m) has
at most 2-torsion). The two vertical projections simply set trees with repeating
labels to zero.

The maps ηin correspond to tree-preserving geometric constructions which
desingularize an order n Whitney tower to a collection of class n + 1 gropes,
as described in detail in [27], and sketched in section 4.3 below. Gropes are
2-complexes built by gluing together compact orientable surfaces, and this cor-
respondence will be used in the proof of the following theorem:

Theorem 24 If a link L ⊂ S3 bounds a non-repeating Whitney tower W of
order n on immersed disks D = ∐mD2 → B4, then for each i the longitude ℓi
lies in Mi(L)(n+1), and

ηin(λn(W)) = µi
n(L) ∈ RL

i
(n+1)(m)

Since the sum of the ηin is injective, this will prove Theorem 8: The intersection
invariant λn(W) ∈ Λn(m) does not depend on the Whitney tower W and is a
link homotopy invariant of L, denoted by λn(L).
For L bounding an honest order n Whitney tower, one can deduce this theorem
from the main result in [6, Thm.5] (and the diagram in Remark 23 above); but
here we only have a non-repeating order n Whitney tower as an input.
Proof: We start by giving an outline of the argument, introducing some nota-
tion that will be clarified during the proof:

(i) First the Whitney tower will be cleaned up, including the elimination
of all repeating intersections of positive order and all repeating Whitney
disks, to arrive at an order n non-repeating Whitney tower W bounded
by L such that all unpaired intersection points of positive order have non-
repeating trees (so the only repeating intersections are self-intersections
in the order 0 disks Dj).

(ii) Then the preferred order 0 disk Di (and all Whitney disks involving Di)
will be resolved to a grope Gi of class n+1 bounded by Li, such that Gi is
in the complement B4rW i, where W i is the result of deleting Di and the
Whitney disks used to construct Gi from W . The grope Gi will display
the longitude ℓi in π1(B

4
rW i) as a product of (n+1)-fold commutators

of meridians to the order 0 surfaces Di := ∪j 6=iDj of W i corresponding
to putting roots at all i-labeled vertices of the trees representing λn(W).
This is the same formula as in the definition of the map ηin, so it only
remains to show that µi

n(L) can be computed in π1(B
4 rW i).

(iii) This last step is accomplished by using Whitney tower-grope duality
(Proposition 25) and Dwyer’s theorem [9] to show that the inclusion
S3

r ∂Di → B4
r W i induces an isomorphism on the Milnor groups

modulo the (n+ 2)th terms of the lower central series.
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Step (i): Let W be an order n non-repeating Whitney tower on D → B4

bounded by L ⊂ S3. As described in [27, Lem.3.5] (or [31, Lem.13]), W can
be split, so that each Whitney disk of W is embedded, and the interior of
each Whitney disk contains either a single unpaired intersection p or a single
boundary arc of a higher-order Whitney disk, and no other singularities. This
splitting process does not change the trees representing λn(W), and results
in each tree tp associated to an order n intersection p being contained in a
4-ball thickening of tp, with all these 4–balls pairwise disjoint. Splitting sim-
plifies combinatorics, and facilitates the use of local coordinates for describing
constructions. Also, split Whitney towers correspond to dyadic gropes (whose
upper stages are all genus one), and dyadic gropes are parametrized by trivalent
(rooted) trees.

We continue to denote the split order n non-repeatingWhitney tower byW , and
will keep this notation despite future modifications. In the following, further
splitting may be performed without mention.

IfW contains any repeating intersections of positive order, then by following the
pushing-down procedure described in the proof of Theorem 4 given in section 3,
all these repeating intersections can be pushed-down until they create (many)
pairs of self-intersections in the order 0 disks. Then all repeating Whitney disks
are clean, and by doing Whitney moves guided by these clean Whitney disks it
can be arranged that W contains no repeating Whitney disks and no repeating
intersections of positive order.

Step (ii): Consider now the component Li boundingDi. We want to convertDi

into a class n+1 grope displaying the longitude ℓi as a product of (n+1)-fold
iterated commutators in meridians to the Dj 6=i using the tree-preserving Whit-
ney tower-to-grope construction of [27, Thm.5]. This construction is sketched
roughly below in section 4.3, and a simple case is illustrated in Figure 12.
Actually, the resulting grope Gi comes with caps, which in this setting are
embedded normal disks to the other Dj which are bounded by essential circles
called tips on Gi. For our purposes the caps only serve to show that these
tips are meridians to the Dj. The trees associated to gropes are rooted trees,
with the root vertex corresponding to the bottom stage surface, and the other
univalent vertices corresponding to the tips (or to the caps). Since W was split,
the upper surface stages of Gi will all be genus one, so the collection of order
n unitrivalent trees t(Gi) associated to Gi will contain one tree for each dyadic
branch of upper stages, with each trivalent vertex of a tree corresponding to a
genus one surface in a branch. In this setting the class of Gi is equal to n+ 1,
the number of non-root univalent vertices in each tree in the collection t(Gi)
(see e.g. [27, Sec.2.3]).

Applying the construction of [27, Thm.5] toDi convertsDi and all the Whitney
disks of W corresponding to trivalent vertices in trees containing an i-label into
a class n+1 grope Gi. This grope Gi (without the extra caps provided by [27,
Thm.5]) is disjoint from W i ⊂ W , where the order n non-repeating Whitney
tower W i consists of the order 0 immersed disks Di := ∪j 6=iDj together with
the Whitney disks of W whose trees do not have an i-labeled vertex. In the
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present setting, any self-intersections of Di will give rise to self-intersections in
the bottom stage surface of Gi (which is bounded by Li), but all higher stages
of Gi will be embedded.
At the level of trees, this construction of Gi corresponds to replacing each i-
labeled vertex on a tree representing λn(W) with a root [27, Thm.5(v)], which
is the same formula as the map on generators defining ηin (signs and orientations
are checked in [6, Lem.31] and [6, Sec.4.2] in the setting of repeating Milnor
invariants; see also sketch in section 4.3 below). So we have shown that, as
an element in π1(B

4 rW i), the ith longitude ℓi is represented by the iterated
commutators in meridians to theDj that correspond to the image of ηin(λn(W))
if the inclusion S3 r ∂Di → B4 rW i induces an isomorphism on the quotients
of the Milnor groups by the (n+ 2)th terms of the lower central series.
Step (iii): To finish the proof of Theorem 24 we will use Dwyer’s Theorem [9]
and a new notion of Whitney tower-grope duality to check that the inclusion
S3 r ∂Di → B4 rW i does indeed induce the desired isomorphism on the quo-
tients of the Milnor groups by the (n+2)th terms of the lower central series. It
is easy to check that the inclusion induces an isomorphism on first homology,
so by [9] the kernel of the induced map on π1 is generated by the attaching
maps of the 2-cells of surfaces generating the (integral) second homology group
H2(B

4 r W i). The order 0 self-intersections Dj ∩ Dj only contribute Milnor
relations, coming from the attaching maps of the 2-cells of the Clifford tori
around the self-intersections. If the Dj were pairwise disjoint, then by intro-
ducing (more) self-intersections as needed (by finger moves realizing the Milnor
relations, see e.g. [18, XII.2]), it could be arranged that π1(B

4 r Di) was in
fact isomorphic to the free Milnor group. Since the Dj will generally inter-
sect each other, we have to use the fact that W i is a non-repeating Whitney
tower of order n to show that any new relations coming from (higher-order)
intersections are trivial modulo (n+ 2)-fold commutators. Since H2(B

4 rW i)
is Alexander dual to H1(W

i, ∂Di), the proof of Theorem 24 is completed by
applying the following general duality result to W i ⊂ B4, which shows that
the other generating surfaces extend to class n+ 2 gropes. �

Proposition 25 (Whitney tower-grope duality) If V is a split Whit-
ney tower on A : Σ = ∐jΣ

2
j → X, where each order 0 surface Aj is a

sphere S2 → X or a disk (D2, ∂D2) → (X, ∂X), then there exist dyadic gropes
Gk ⊂ X r V such that the Gk are geometrically dual to a generating set for
the relative first homology group H1(V , ∂A). Furthermore, the tree t(Gk) asso-
ciated to each Gk is obtained by attaching a rooted edge to the interior of an
edge of a tree tp associated to an unpaired intersection p of V.

Here geometrically dual means that the bottom stage surface of eachGk bounds
a 3–manifold which intersects exactly one generating curve of H1(V , ∂A) trans-
versely in a single point, and is disjoint from the other generators. In particular,
there are as many gropes Gk as free generators of H1(V , ∂A). Note that it fol-
lows from the last sentence of the proposition that if V is order n, then each
Gk is class n+ 2.
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Proof: Since the Aj are simply-connected, the group H1(V , ∂A) is generated by
sheet-changing curves in V which pass once through a transverse intersection
(and avoid all other transverse intersections in V). Such curves either pass
through an unpaired intersection or a paired intersection. First we consider
a sheet-changing curve through an unpaired intersection p ∈ WI ∩ WJ (so
tp = 〈I, J〉). The Clifford torus T around p is geometrically dual to the curve,
and the dual pair of circles in T represent meridians to WI andWJ , respectively
(recall our convention that if, say, J = j is order 0, Then WJ = Aj is an order
0 surface). The next lemma shows that the circles on T bound branches of the
desired grope G(I,J), with t(G(I,J)) = (I, J).

W(I
1
,I
2
)

I
1

I
2

I
2

Figure 9: The normal circle bundle TI to WI1 and W(I1,I2) over the dotted
circle and arc on the left is shown on the right.

Lemma 26 Any meridian to a Whitney disk W(I1,I2) in a Whitney tower V ⊂
X bounds a grope G(I1,I2) ⊂ X r V such that t(G(I1,I2)) = (I1, I2).

Proof: As illustrated in Figure 9, such a meridian bounds a punctured Clifford
torus TI around one of the intersections paired byW(I1,I2). Each of a symplectic
pair of circles on TI is a meridian to one of the Whitney disks WIi paired
by W(I1,I2), so iterating this construction until reaching meridians to order 0
surfaces yields the desired grope G(I1,I2) with bottom stage TI . �

Now we consider the sheet-changing curves through intersection points that
are paired by Whitney disks. Let W(I,J) be a Whitney disk, and consider the
boundary γ of a neighborhood of a boundary arc of W(I,J) in one of the sheets
paired by W(I,J), as illustrated in the left-hand side of Figure 10. We call such a
loop γ an oval of the Whitney disk. Clearly, an oval intersects once with a sheet-
changing curve that passes once through one of the two intersections paired by
W(I,J). So the normal circle bundle to the sheet over an oval is geometrically
dual to such a sheet-changing curve. The following lemma completes the proof
of Proposition 25. �

Lemma 27 Let W(I,J) be a Whitney disk in a split Whitney tower V such that
W(I,J) contains a trivalent vertex of a tree tp = 〈(I, J),K〉 associated to an
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I

J

K1

K2 K2

K1

J

W(I,J)

a a

Figure 10: Left: A (dotted) oval γ ⊂ WI . Right: A (dotted) parallel γ′ to
the oval bounds a grope in a nearby ‘time’ coordinate. Not shown is the dual
branch of the grope attached to the meridian of WJ (as per Lemma 26).

unpaired intersection point p ∈ V. If γ ⊂ WI is an oval of W(I,J) ⊂ V; then
the normal circle bundle T to WI over γ is the bottom stage of a dyadic grope
G ⊂ (X r V), such that t(G) = (I, (J,K)).

Proof: The torus T contains a symplectic pair of circles, one of which is a
meridian to WI , while the other is a parallel γ′ of γ. By Lemma 26, the
meridian to WI bounds a grope GI with t(GI) = I, so we need to check that
γ′ bounds a grope G(J,K) with tree (J,K).

As shown in Figure 10, γ′ bounds a grope whose bottom stage contains a
symplectic pair of circles, one of which is a meridian to WJ ; while the other is
either parallel to an oval in W(I,J) around the boundary arc of a higher-order
Whitney disk W((I,J),K1) for K = (K1,K2) (as shown in the figure), or is a
meridian to WK if W(I,J) contains the unpaired intersection p = W(I,J) ∩WK

(since V is split, these are the only two possible types of singularities in W(I,J)).
By Lemma 26, the meridian to WJ bounds a grope GJ ; and inductively the
oval-parallel circle, or again by Lemma 26 the meridian to WK , bounds a grope
GK ; so the grope bounded by γ′ does indeed have tree (J,K). �

4.3 The Whitney tower-to-grope construction

This subsection briefly sketches the Whitney tower-to-grope construction used
above in Step (ii) of the proof of Theorem 24. In [6] this procedure of converting
Whitney towers to capped gropes in order to read off commutators determined
by link longitudes is covered in detail in the setting of repeating Milnor invari-
ants. The analogous computation of repeating Milnor invariants from capped
gropes described there is trickier in that meridians to a given link component
Li can also contribute to the same longitude ℓi. Hence the computation of
ℓi uses a push-off G′

i of the grope body Gi, and there may be intersections
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1

2

p

3

4

D

W

W

1

(1,2)

((1,2),3)

Figure 11: Moving radially into B4 from left to right, a link L ⊂ S3 bounds
an order 2 (non-repeating) Whitney tower W : The order 0 disk D1 consists of
a collar on L1 together with the indicated embedded disk on the right. The
other three order 0 disks in W consist of collars on the other link components
which extend further into B4 and are capped off by disjointly embedded disks.
The order 1 Whitney disk W(1,2) pairs D1 ∩ D2, and the order 2 Whitney
disk W((1,2),3) pairs W(1,2) ∩ D3, with p = W((1,2),3) ∩ D4 the only unpaired
intersection point in W . See Figure 12 for the tree-preserving resolution of W
to a grope.

between the bottom stage of G′
i and caps on Gc

i which correspond to repeating
indices on the associated tree.

Here in the non-repeating setting, ℓi can be computed as described above di-
rectly from the body Gi of the capped gropeGc

i , by throwing away the caps and
just remembering how the tips of Gi are meridians to the other components
corresponding to the univalent labels on t(Gc

i ). See Figures 11 and 12 for the
local model near a tree.

A typical 0-surgery which converts a Whitney disk W(I,J) into a cap c(I,J) is
illustrated in Figure 13, which also shows how the signed tree is preserved.
The sign associated to the capped grope is the product of the signs coming
from the intersections of the caps with the bottom stages, which corresponds
to the sign of the un-paired intersection point in the Whitney tower; (surgering
along the other boundary arc of the Whitney disk, and the other sign cases are
checked similarly). If either of the J- and K-labeled sheets is a Whitney disk,
then the corresponding cap will be surgered after a Whitney move which turns
the single cap-Whitney disk intersection into a cancelling pair of intersections
between the cap and a surface sheet that was paired by the Whitney disk, as
described in Section 4.2 of [27] (with orientations checked in Lemma 14, Figures
10 and 11 of [31]).
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1 1

2
2

3
3

4 4

Figure 12: Both sides of this figure correspond to the slice of B4 shown in the
right-hand side of Figure 11. The tree tp = 〈((1, 2), 3), 4〉 ⊂ W is shown on
the left. Replacing this left-hand side by the right-hand side illustrates the
construction of a class 3 (capped) grope Gc

1 bounded by L1, shown (partly
translucent) on the right, gotten by surgering D1 and W(1,2). Each of the disks
D2, D3 and D4 has a single intersection with a cap of Gc

1, with G1 displaying
the longitude of L1 as the triple commutator [x2, [x3, x4]] in π1(B

4rW1), where
W1 = D2∪D3∪D4. This simple case illustrates the local picture of the general
computation of ηin(λn(W)): For a more complicated L = ∂W this construction
would be carried out in a 4–ball neighborhood of each tree containing an i-
labeled vertex, and W i would consist of other Whitney disks as well as the
Dj 6=i.

I

c

I

KK

W

JJ

(I,J) (I,J)

Figure 13: Resolving a Whitney tower to a capped grope preserves the as-
sociated oriented trees. The boundary of the I-labeled sheet represents the
commutator [xJ , xK ], up to conjugation, of the meridians xJ and xK to the J-
and K-labeled sheets.

5 Proof of Theorem 11

Let L ⊂ S3 bound an order n Whitney tower in B4, and let XL be the 4–
manifold gotten by attaching 0-framed 2–handles to L. We need to show:
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(i) Any map A : ∐mS2 → XL of 2–spheres into XL admits an order n
Whitney tower.

(ii) For any order n non-repeating Whitney tower W supported by A :
∐mS2 → XL, the non-repeating intersection invariant λn(A) := λn(W) ∈
Λn(m) is independent of the choice of W .

The first statement of Theorem 11 follows from the observations in section 2.10:
Any A : ∐mS2 → XL is homotopic to the union of band sums of parallel copies
of cores of the 2–handles ofXL with 0-framed immersed disks bounded by a link
L′ formed from L by the operations of adding parallel components, switching
orientations, taking internal band sums and deleting components. Any order n
Whitney tower on immersed disks in the 4–ball bounded by L can be modified
to give an order nWhitney tower on immersed disks bounded by L′ as described
in subsection 2.10. Then the union of the Whitney tower bounded by L′ with
the 2–handle cores forms an order n Whitney tower supported by A.
To prove the second statement of Theorem 11 we will use the following con-
sequence of Theorem 8: If V is any order n non-repeating Whitney tower on
a collection of m immersed 2–spheres in the 4–sphere, then the order n non-
repeating intersection invariant λn(V) must vanish in Λn(m). Otherwise, the
2–spheres supporting V could be tubed into disjointly embedded 2–disks in the
4–ball bounded by an unlink U in the 3–sphere to create an order n Whitney
tower WU in B4 = B4#S4 with λn(U) = λn(WU ) = λn(V) 6= 0 ∈ Λn(m).
We start with the case where L is an m-component link, and A = ∐m

i=1Ai :
S2 → XL is such that each Ai goes geometrically once over the 2–handle of XL

attached to the ith component Li of L, and is disjoint from all other 2–handles.
We assume that the orientations of A and L are compatible. In this case, the
union of an order n Whitney tower WL bounded by L with the cores of the
2–handles forms an order n Whitney tower W on A, with λn(W) = λn(L) :=
λn(WL) ∈ Λn(m). If W ′ is any other order n non-repeating Whitney tower on
A′, with A′ homotopic to A, then we will show that λn(W

′) = λn(W) ∈ Λn(m)
by exhibiting the difference λn(W) − λn(W

′) as λn(V), where V is an order
n non-repeating Whitney tower on a collection of immersed 2–spheres in the
4–sphere.
To start the construction, let W ′ ⊂ XL = B ∪H1 ∪H2 ∪ · · · ∪Hm be an order
n non-repeating Whitney tower on A′, with A′ homotopic to A. Here B is
the 4–ball, and the Hi are the 0-framed 2–handles. Any singularities of W ′

which are contained in the Hi can be pushed off by radial ambient isotopies,
so that W ′ may be assumed to only intersect the Hi in disjointly embedded
disks which are parallel copies of the handle cores. These embedded disks lie
in the order 0 2–spheres and the interiors of Whitney disks of W ′. It also may
be assumed that the trees representing λn(W

′) are disjoint from all the Hi.
The intersectionW ′∩∂B is a link L′ in S3, such that L′ is related to L by adding
some parallel copies of components and switching some orientations. Note that
since each Ai goes over Hi algebraically once, L′ contains L as a sublink. Write
L′ as the union L′ = L0 ∪ L1 of two links where the components of L0 bound
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handle core disks in the order 0 2–spheres of W ′, and the components of L1

bound handle core disks in the Whitney disks (surfaces of order at least 1) of
W ′. For each i, the components of L0 which are parallel to Li ⊂ L must come
in oppositely oriented pairs except for one component which is oriented the
same as Li. The components of L1 can be arbitrary parallels of components of
L.
Now delete the Hi from XL, and form S4 by gluing another 4–ball B+ to B
along their 3–sphere boundaries. Since L bounds the order n Whitney tower
WL in B+, an order n Whitney tower W+ ⊂ B+ bounded by L′ can be
constructed using parallel order 0 disks and Whitney disks of WL as in sec-
tion 2.10 above. The union of W+ together with W̊ ′ := W ′ ∩ B is an order n
non-repeating Whitney tower V := W+ ∪ W̊ ′ on m immersed 2–spheres in S4.
Figure 14 gives a schematic illustration of V .

S

B

B

3

+

Figure 14: The non-repeating Whitney tower V = W+∪W̊ ′ ⊂ S4 = B∪S3 B+:
The links L ⊂ L′ ⊂ S3 are shown in the horizontal middle part of the figure.
The components of L are black; the component of L1 ⊂ L′ is blue, and an
oppositely oriented pair of components in L0 ⊂ L′ are shown in green. The
lower part of the figure shows W̊ ′ ⊂ B, and the upper part shows W+ ⊂ B+.
The tree shown involving the blue L1-component passes down through L1 into
a Whitney disk of W̊ ′ and then down into a pair of order 0 disks in W̊ ′, so
the tree is of order greater than n. The pair of trees each having a univalent
vertex on a green order 0 disk in W+ have opposite signs due to the opposite
orientations on the green disks.

We will check that λn(V) = λn(WL) − λn(W
′) ∈ Λn(m), which will complete

the proof in this case by the opening observation that λn(V) vanishes. We take
the orientation of (B+, ∂B+) in S4 to be the standard orientation of (B4, S3),
and that of (B, ∂B) to be the opposite. Since W̊ ′ ⊂ B contains all the trees
representing λn(W

′), these trees contribute the term −λn(W
′) to λn(V).
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Consider next the trees corresponding to intersections in W+ involving com-
ponents of L1 (i.e. the trees that intersect at least one order 0 disk of W+

bounded by a component of L1). In V these trees are subtrees of trees (for the
same intersections) which pass down through L1 into the Whitney disks of W̊ ′

until reaching the order 0 disks in W̊ ′. Any such tree is of order strictly greater
than n, since it contains an order n proper subtree (the part of the tree in W+)
– see Figure 14. Such higher-order trees do not contribute to λn(V).
Consider now the remaining trees in V which only involve the components of
L0. These trees represent λn(L

0) = λn(W
0), where W0 ⊂ W+ is the order n

Whitney tower in B+ bounded by L0 ⊂ ∂B+; but we claim that in V these
trees contribute exactly λn(L), which completes the proof in this case. To see
the claim, recall that L0 consists of L together with oppositely oriented pairs
of parallel components of L. Denote by +Lj

i , −Lj
i such a pair which is parallel

to the ith component Li of L, and which bounded oppositely oriented handle-
cores +Hi and −Hi in the jth component A′

j of A′. The univalent labels on

trees representing λn(L
0) = λn(W

0) which correspond to +Lj
i and −Lj

i when
considered as trees in V are labeled by the same label j. Such re-labelings
correspond exactly to the operations of Lemma 20 in section 2.10.6, which
implies that all trees involving such pairs of components contribute trivially to
λn(V), verifying the claim.
The proof of Theorem 11 in the general case follows the argument just given
with essentially only notational differences: An arbitrary A is represented by
the union of a linear combination of cores of the Hi with immersed disks in B4

bounded by a link LA formed from L by the operations of adding parallel com-
ponents, switching orientations, taking internal sums and deleting components.
Since L bounds an order n Whitney tower, so does LA by section 2.10.6. Hence
A supports an order n Whitney towerW with λn(W) = λn(LA) ∈ Λn(m). One
shows that λn(W

′) = λn(LA) for any non-repeating W ′ on A′ homotopic to A
by proceeding as above with LA taking the place of L.

6 Pulling apart parallel 2–spheres

In this section we prove Theorem 1 of the introduction, which states that
for a map A0 : S2 → X of a 2–sphere in a simply connected 4–manifold X
with vanishing normal Euler number, the homological self-intersection number
[A0] · [A0] vanishes if and only if any number of parallel copies of A0 can be
pulled apart.
Note that since the Euler number e(A) of the normal bundle of a map A :
S2 → X of a 2-sphere in a 4–manifold X can be changed by ±2 by performing
a cusp homotopy of A, the condition e(A) = 0 can be arranged if and only if
the second Stiefel-Whitney class ω2 ∈ H2(X ;Z2) vanishes on [A] (see e.g. [12,
Sec.1.3A]). On the other hand, if ω2([A]) 6= 0, then [A] · [A] is odd and hence
not even two copies of A can be pulled apart.
The proof of Theorem 1 includes a geometric proof that boundary links in the
3–sphere are link-homotopically trivial (Proposition 28 below). We also give
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an example (6.2) illustrating that the “only if” direction of Theorem 1 is not
generally true in non-simply connected 4–manifolds.

6.1 Proof of Theorem 1.

We drop the subscript from notation and consider a map A : S2 → X with
vanishing normal Euler number e(A) = 0 and X simply connected. From the
relationship [A] · [A] = e(A) + λ(A,A′), and the hypothesis that e(A) = 0, we
have that [A] · [A] is equal to the Wall pairing λ(A,A′) which counts signed
intersections between A and any transverse parallel copy A′ (a generic normal
section). (Since X is simply connected, the Wall pairing is just the usual
algebraic intersection number in Z.) So the “if” direction of Theorem 1 is
clear, since λ(A,A′) obstructs pulling apart any two copies of A.

For the other direction, start by observing that the vanishing of [A] · [A] =
λ(A,A′) implies that A supports an order 1 Whitney tower W : The intersec-
tions between the parallels A and A′ correspond in pairs to self-intersections of
A, so λ(A,A′) is equal to twice the sum of signed self-intersections of A. These
self-intersections must come in oppositely signed pairs, which admit Whitney
disks since X is simply connected.

First consider the case where A also has vanishing order 1 intersection in-
variant (section 2.7): If A is characteristic, then τ1(A) := τ(W) = 0 ∈
T1(1)/INT1(A) ∼= Z2 = Z/2Z; or if A is not characteristic, then T1(1)/INT1(A)
is trivial (see [30, Sec.1]). By Theorem 2 of [30] the vanishing of τ1(A) implies
that A admits an order 2 Whitney tower, so by Lemma 3 of [28] for any
m ∈ {3, 4, 5, . . .}, A admits a Whitney tower W of order m. (The fact that A
is connected and X is simply connected is crucial here, since under these hy-
potheses Lemma 3 of [28] shows that higher-order Whitney towers can be built
using a Whitney disk boundary-twisting construction.) Now, taking parallel
copies of the Whitney disks in W yields an order m Whitney tower on m+ 1
parallel copies of A, as observed above in 2.10.2. In particular, we get an order
m non-repeating Whitney tower so, by Theorem 4, the m+1 parallel copies of
A can be pulled apart.

Consider now the case where τ1(A) = τ1(W) is the non-trivial element in Z2.
We will first isolate (to a neighborhood of a point) the obstruction to building
an order 2 Whitney tower, and then combine the previous argument away from
this point with an application of Milnor’s Theorem 4 of [23] (which we will also
prove geometrically in Proposition 28 below).

As illustrated in Figure 15, a trefoil knot in the 3–sphere bounds an immersed 2–
disk in the 4–ball which supports an order 1 Whitney tower containing exactly
one Whitney disk whose interior contains a single order 1 intersection point. It
follows that the square knot, which is the connected sum of a right- and a left-
handed trefoil knot, bounds an immersed disk D in the 4–ball which supports
a Whitney tower V containing exactly two first order Whitney disks, each of
which contains a single order 1 intersection point with D. Being a well-known
slice knot, the square knot also bounds an embedded 2–disk D′ in the 4–ball,
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p+

p-

W

Figure 15: Moving into B4 from left to right: A trefoil knot in S3 (left) bounds
an immersed disk having a single pair of self-intersections p± admitting a Whit-
ney disk W containing a single order 1 intersection point (center). An unknot-
ted ‘slice’ of the immersed disk is shown on the right. The rest of the immersed
disk is described by a null isotopy further into B4 (not shown) of this unknot.

and by gluing together two 4–balls along their boundary 3–spheres we get an
immersed 2–sphere S = D ∪D′ in the 4–sphere having the square knot as an
“equator” and supporting the obvious order 1 Whitney tower WS consisting
of S together with the two Whitney disks from V pairing the intersections in
D ⊂ S.

Now take WS in a (small) 4–ball neighborhood of a point in X (away from
A), and tube (connected sum) A into S. This does not change the (regular)
homotopy class of A, so we will still denote this sum by A. Note that by
construction there is a (smaller) 4–ball B4 such that the intersection of the
boundary ∂B4 of B4 with A is a trefoil knot (one of the trefoils in the connected
sum decomposition of the square knot), and B4 contains one of the twoWhitney
disks of WS . Denote by X◦ the result of removing from X the interior of B4,
and denote by A◦ the intersection of A with X◦ (so A◦ is just A minus a small
open disk). Since the order 1 intersection point in the Whitney disk of WS

which is not contained in B4 now cancels the obstruction τ1(W) ∈ Z2, we have
that A◦ admits an order 2 Whitney tower in X◦, and hence again by Lemma 3
of [28], A◦ admits a Whitney tower of any order in X◦. As before, it follows
that parallel copies of A◦ can be pulled apart by using parallel (non-repeating)
copies of the Whitney disks in a high order Whitney tower on A◦. The parallel
copies of A◦ restrict on their boundaries to a link of 0-parallel trefoil knots in
∂B4, and the proof of Theorem 1 is completed by the following lemma which
implies that these trefoil knots bound disjointly immersed 2–disks in B4. �

Proposition 28 If the components Li of a link L = ∪Li ⊂ S3 are the bound-
aries of disjointly embedded orientable surfaces Fi ⊂ S3 in the 3–sphere, then
the Li bound disjointly immersed 2–disks in the 4–ball.

This proposition first appeared as Milnor’s Theorem 4 of [23], and is a special
case of the general results of [32] which are proved using symmetric surgery.
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Proof: Choose a symplectic basis of simple closed curves on each Fi bounding
properly immersed 2–disks into the 4–ball. We shall refer to these disks as
caps. These caps may intersect each other, but the interiors of these caps lie
in the interior of B4 and so are disjoint from ∪iFi ⊂ S3. The proof proceeds
inductively by using half of these caps to surger each Fi to an immersed disk
F 0
i , while using the other half of the caps to construct Whitney disks which

guide Whitney moves to achieve disjointness.

We start with F1. Let D1r and D∗
1r denote the caps bounded by the symplectic

circles in F1, with ∂D1r geometrically dual to ∂D∗
1r in F1.

Step 1: Using finger moves, remove any interior intersections between the D∗
1r

and any D1s by pushing the D1s down into F1 (Figure 16).

D

F

D
D*1r

1

1r

1s

Figure 16:

Step 2: Surger F1 along the D1r (Figure 17). The result is a properly im-
mersed 2–disk F 0

1 in the 4–ball bounded by L1 in S3. The self-intersections
in F 0

1 come from intersections and self-intersections in the surgery disks D1r,
and any intersections between the D1r and F1 created in Step 1, as well as
any intersections created by taking parallel copies of the D1r during surgery.
We don’t care about any of these self-intersections in F 0

1 , but we do want to
eliminate all intersections between F 0

1 and any of the disks Dj on the other
Fj , j ≥ 2. These intersections between F 0

1 and the disks on the other Fj all
occur in cancelling pairs, with each such pair coming from an intersection be-
tween a D1r and a Dj . Each of these cancelling pairs admits a Whitney disk
W ∗

1r constructed by adding a thin band to (a parallel copy of) the dual disk
D∗

1r as illustrated in Figure 17. Note that by Step 1 the interiors of the D∗
1r

are disjoint from F 0
1 , hence the interiors of the W ∗

1r are also disjoint from F 0
1 .

The interiors of the W ∗
1r may intersect the Dj , but we don’t care about these

intersections.

Step 3: Do theW ∗
1r Whitney moves on theDj . This eliminates all intersections

between F 0
1 and the disks Dj on all the other Fj (j ≥ 2). Note that any interior
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Figure 17:

intersections the W ∗
1r may have had with the Dj only lead to more intersections

among the Dj , so these three steps may be iterated, starting next by applying
Step 1 to F2. �

6.2 Example

If π1X is non-trivial, then the conclusion of Theorem 1 may not hold, as we
now illustrate. Let X be a 4–manifold with π1X ∼= Z, such that π2X has
trivial order 0 intersection form; and let A1 be an immersed 0-framed 2–sphere
admitting an order 1 Whitney tower W in X with a single order 1 intersection
point p such that τ1(A1) = tp ∈ T1(Z, 1) is represented by the single Y -tree
Y (e, g, h) = tp having one edge labeled by the trivial group element e, and the
other edges labeled by non-trivial elements g 6= h, all edges oriented towards the
trivalent vertex. Such examples are given in [30], and can be easily constructed
by banding together Borromean rings in the boundary of B3×S1 and attaching
a 0-framed two handle.
If A2 and A3 are parallel copies of A1, then the order 1 non-repeating intersec-
tion invariant λ1(A1, A2, A3) takes values in Λ1(Z, 3) (since the vanishing of the
order 0 intersections means that all INT1 relations are trivial). By normalizing
the group element decorating the edge adjacent to the 1-label to the trivial
element using the HOL relations, Λ1(Z, 3) is isomorphic to Z[Z×Z]. Using six
parallel copies of the Whitney disk in W , we can compute that λ1(A1, A2, A3)
is represented by the sum of six Y -trees Y (e, g, h), where the univalent ver-
tex labels vary over the permutations of {1, 2, 3} (see [30, Thm.3.(iii)]). This
element corresponds to the element

(g, h)−(h, g)+(hg−1, g−1)−(g−1, hg−1)+(gh−1, h−1)−(h−1, gh−1) ∈ Z[Z×Z]

which is non-zero if (and only if) g and h are distinct non-trivial elements of
Z. Since λ1(A1, A2, A3) ∈ Λ1(Z, 3) is a well-defined homotopy invariant [30,
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Thm.3], the Ai can not be pulled apart whenever g and h are distinct and
non-trivial.

7 Dual spheres and stablizations

This section contains proofs of Theorem 2 and Theorem 13, both of which
involve using low-order intersections to kill higher-order obstructions.

7.1 Proof of Theorem 13

We need to show that surfaces Ai with pairwise vanishing Wall intersections
can be pulled apart if they have algebraic duals Bi : S

2 → X .

Proof: Wall’s intersection pairing λ(Ai, Aj) ∈ Z[π] is defined when the Ak :
Σk → X are maps of simply connected surfaces Σk, or more generally when
the Ak are π1-null (Remark 16). The pairwise vanishing of Wall’s invariant
gives an order 1 non-repeating Whitney tower on the Ai (2.6). Assuming
inductively for 1 ≤ n < m − 2 the existence of an order n non-repeating
Whitney tower W on the Ai, it is enough to show that it can be arranged that
λn(W) = 0 ∈ Λn(π,m), which allows us to find an order n + 1 non-repeating
Whitney tower by Theorem 6, and then to apply Theorem 4 when n = m− 2.

By performing finger moves to realize the rooted product, any order n Whitney
tower W ⊂ X can be modified (in a neighborhood of a 1-complex) to have an
additional clean order n Whitney disk WJ whose decorated tree corresponds to
any given bracket J , with edges labeled by any given elements of π := π1X . If
J is non-repeating and does not contain the label i, then tubing the 2–sphere
Bi into WJ will change λn(W) exactly by adding the order n generator ±〈J, i〉g,
where the sign can be chosen by the choice of orientation on Bi, and the element
g ∈ π decorating the i-labeled edge is determined by the choice of arc guiding
the tubing (together with the whiskers on WJ and Ai): Since WJ is order n,
any intersections between Bi and other Whitney disks inW will only contribute
intersections of order strictly greater than n; and since λ(Aj , Bi) = δij ∈ Z[π],
any other intersections between Aj and Bi contribute only canceling pairs of
order n intersections. For 1 ≤ n, any generator of Λn(π,m) can be realized as
〈J, i〉g, so the just-described tubing procedure can be used to modify W until
λn(W) = 0 ∈ Λn(π,m). �

7.2 Proof of Theorem 2

We need to show that λ1(A) = 0 ∈ Λ1(π,m)/INT1(A) if and only if A :
∐mS2 → X can be pulled apart stably.

Note that the vanishing of the homotopy invariant λ0(A) is implied by λ1(A)
being defined.

Proof: The “if” direction is immediate since λ1(A) only depends on the homo-
topy class of A (by [30]), and any 2–spheres carried by the stabilization con-
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tribute trivially to INT1(A). (See section 8.2 below for details on the INT1(A)
relations in the cases m = 3, 4 and X simply connected.)

For the “only if” direction, observe first that the vanishing of λ1(A) gives
an order 2 non-repeating tower supported by A (by Theorem 6). Assuming
inductively for 2 ≤ n < m − 2 the existence of an order n non-repeating
Whitney tower W on A, it is enough to show that it can be arranged that
λn(W) = 0 ∈ Λn(π,m), which allows us to find an order n + 1 non-repeating
Whitney tower by Theorem 6, and then to apply Theorem 4 when n = m− 2.

For n ≥ 2, any generator of Λn(π,m) can be written as 〈I, J〉g where I and
J are both of order greater than or equal to 1, and g ∈ π decorates the edge
where the roots of I and J are joined. As in the above proof of Theorem 13,
any order n non-repeating Whitney tower W on A can be modified to have
new clean Whitney disks WI and WJ , without affecting λn(W). Stabilizing
the ambient 4–manifold by S2 × S2 and tubing WI and WJ into a pair of
dual 2–spheres coming from the stablization creates an intersection realizing
the generator 〈I, J〉g, where the element g ∈ π is determined by the choices
of whiskers on WI and WJ and the tubes into the dual spheres. By realizing
generators in this way it can be arranged that λn(W) = 0.

By Poincaré duality, the same holds for any closed simply connected 4–manifold

other than S4. For instance, for stablization by CP
2 (or CP

2
), where the dual

2–spheres are copies of CP1, the framings on WI and WJ can be recovered by
boundary-twisting [12, Sec.1.3], which only creates repeating intersections. �

We remark that some control on the number of stablizations needed in The-
orem 2 can be obtained in terms of m when X is simply connected (so that
Λn(m) is finitely generated). For instance, a single stablization realizes k times
a generator by tubing WI or WJ into k copies (tubed together) of one of the
dual spheres.

8 Second order intersection indeterminacies

It is an open problem to give necessary and sufficient algebraic conditions for
determining whether or not an arbitrary quadruple A : ∐4S2 → X of 2–spheres
in a 4–manifold can be pulled apart. The vanishing of λ0(A) and λ1(A) is of
course necessary, and is equivalent to A admitting an order 2 non-repeating
Whitney tower. As explained in the introduction (1.9), refining the sufficiency
statement provided by Corollary 7 requires the introduction of intersection
relations INT2(A) in the target of λ2(A) which correspond to order 0 and
order 1 intersections involving 2-spheres which can be tubed into the Whitney
disks of any Whitney tower W supported by A.

With an eye towards stimulating future work, the goals of this section are
to present some relevant details, describe some partial results, and introduce
a related number theoretic problem, while formulating order 2 intersection
relations which make the following conjecture precise:
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Conjecture 29 If a quadruple of immersed 2–spheres A : ∐4S2 → X in
a simply connected 4–manifold X admits an order 2 non-repeating Whitney
tower W, then A can be pulled apart if and only if λ2(A) := λ2(W) vanishes
in Λ2(4)/INT2(A).

This section is somewhat technical, so we begin by providing an outline: After
quickly recalling in 8.1 the lack of indeterminacies in the order 0 non-repeating
invariant λ0, the intersection relations INT1 in the target of the order 1 non-
repeating invariant λ1 are examined in detail for triples and then quadruples
of 2–spheres, including notation and examples intended to clarify and motivate
the introduction of the intersection relations INT2(A) in the target of the order
2 non-repeating invariant λ2. These INT2(A) relations, which are determined
by λ0 and λ1 on π2X , are discussed throughout section 8.3. Section 8.3.1
observes that if A has any non-trivial order 0 intersections with any other 2–
spheres in X , then the target Λ2(4)/INT2(A) of λ2(A) must be finite; and
presents two related results, Proposition 30 and Proposition 31, which give
sufficient conditions for pulling apart A in the setting where λ2(A) is defined.
Section 8.3.3 describes the INT2 relations as the image in Λ2

∼= Z ⊕ Z of
a linear map determined by λ1 on π2X in the setting where λ0 vanishes on
π2X , as motivation for the discussion in section 8.3.5 on how non-trivial values
of λ0 away from A can affect the INT2 relations. Section 8.3.6 shows how
the INT2 relations can be computed as the image of a map whose non-linear
part is determined by Diophantine quadratic equations coupled by the order
0 intersection form λ0 on π2X , leading naturally to some relevant number
theoretic questions.
Throughout the rest of this section we assume that the ambient 4–manifold X
is simply connected. For brevity we suppress the domains of the components
of A from notation and consider collections A = A1, . . . , Am # X of immersed
2–spheres.

8.1 Order 0 intersection invariants

Recall (2.6) that the order 0 non-repeating intersection invariant
λ0(A1, . . . , Am) =

∑

sign(p) · i−−− j ∈ Λ0(m) on 2–spheres immersed in
a simply connected 4–manifold X carries exactly the same information as
the integral homological intersection form on H2(X), with the sum of the
coefficients of the i−−−j corresponding to the usual homological intersection
number [Ai] · [Aj ] ∈ Z. There are no intersection indeterminacies in this order
0 setting, and A1, . . . , Am admits an order 1 non-repeating Whitney tower if
and only if λ0(A1, . . . , Am) vanishes in Λ0(m) (which is isomorphic to a direct
sum of

(

m
2

)

copies of Z, one for each (unordered) pair of distinct indices i, j).

8.2 Order 1 intersection relations.

The order 1 intersection relations INT1 are described by order 0 intersections
λ0. These INT1 relations are examined here in detail for triples and quadruples
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of 2–spheres, as notational and motivational preparation for describing the
order 2 intersection relations.

8.2.1 Order 1 triple intersections

For a triple of immersed 2–spheres A1, A2, A3 # X with λ0(A1, A2, A3) = 0,
the order 1 non-repeating intersection invariant λ1(A1, A2, A3) is a sum of order
1 Y -trees in Λ1(3) ∼= Z modulo the INT1(A1, A2, A3) intersection relations:

j
i >−λ0(S(i,j), Ak) = 0

where S(i,j) ranges over π2X , and (i, j) ranges over the three choices of pairs

from {1, 2, 3}. (Here the notation j
i >−λ0(S(i,j), Ak) indicates the sum of trees

gotten by attaching the root of (i, j) to the (i, j)-labeled univalent vertices
in λ0(S(i,j), Ak) corresponding to S(i,j).) Geometrically, these relations cor-
respond to tubing any Whitney disk W(i,j) into any 2–sphere S(i,j). Via the
identification Λ1(3) ∼= Z, the quotient Λ1(3)/INT1(A1, A2, A3) is isomorphic to
Zd = Z/dZ, where d is the greatest common divisor of all the λ0(S(i,j), Ak).
This invariant λ1(A1, A2, A3) ∈ Λ1(3)/INT1(A1, A2, A3) is the Matsumoto
triple [25] which vanishes if and only if A1, A2, A3 admit an order 2 non-
repeating Whitney tower (and hence can be pulled apart [34]).
Examples: In the 4–manifold XL gotten by attaching 0-framed 2-handles to
the Borromean rings L = L1 ∪ L2 ∪ L3 ⊂ S3 = ∂B4, all INT1 relations are
trivial, and the triple A1, A2, A3 of 2–spheres determined (up to homotopy)
by the link components can not be pulled apart since λ1(A1, A2, A3) is equal
to (±) the generator 2

1 >− 3 of Λ1(3) ∼= Z.
If XL is changed to X ′

L by attaching another 2-handle along a meridional circle
to L3, then INT1(A1, A2, A3) = Λ1(3) since 2

1 >−λ0(S(1,2), A3) = (±)21 >− 3,
where S(1,2) is the new 2–sphere which is dual to A3. Now A1, A2, A3 # X ′

L

can be pulled apart since λ1(A1, A2, A3) takes values in the trivial group.

8.2.2 Computing the INT1(A1, A2, A3) intersection relations

Since each element of π2X can affect the non-repeating order 1 indeterminacies
in three independent ways (by tubing 2–spheres into Whitney disks W(1,2),
W(1,3), and W(2,3)) the INT1(A1, A2, A3) relations can be computed as the
image of a linear map Zr ⊕ Zr ⊕ Zr −→ Z, with r the rank of the Z-module
π2X modulo torsion. Specifically, let Sα be a basis for π2X (mod torsion),
and define integers aαij := λ0(S

α
(i,j), Ak) for S

α
(i,j) ranging over the basis, and i,

j, k distinct. Then, identifying Λ1(3) ∼= Z, the INT1(A1, A2, A3) intersection
relations can be described as

∑

α

(xα
12a

α
12 + xα

31a
α
31 + xα

23a
α
23) = 0

with the coefficients xα
ij ranging (independently) over Z.
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Using integer vector notation, this map can be written concisely as:

(x12, x31, x23) 7−→ x12 · a12 + x31 · a31 + x23 · a23.

with “ · ” denoting the dot product in Zr.

8.2.3 Order 1 quadruple intersections

For a collection A of four immersed 2–spheres A = A1, A2, A3, A4 # X with
vanishing λ0(A), the order 1 non-repeating intersection invariant λ1(A) takes
values in Λ1(4)/INT1(A), with the INT1(A) relations given by

j
i >−λ0(S(i,j), Ak, Al) = 0

where S(i,j) ranges over π2X , and (i, j) ranges over the six choices of distinct
pairs from {1, 2, 3, 4}. Each such relation corresponds to tubing the 2–sphere
S(i,j) into a Whitney disk W(i,j). Here Λ1(4) ∼= Z ⊕ Z ⊕ Z ⊕ Z, and each
generator of the rank r Z-module π2X modulo torsion gives six relations, so
the target group Λ1(4)/INT1(A) of λ1(A) is the quotient of Z4 by the image
of a linear map from Z6r. The invariant λ1(A) vanishes in Λ1(4)/INT1(A) if
and only if A admits an order 2 non-repeating Whitney tower.
Example: Note that each of the four copies of Z in Λ1(4) corresponds to
a target of a Matsumoto triple (a choice of three distinct indices), but the
vanishing of the all the triples is not sufficient to get an order 2 non-repeating
Whitney tower on the A because of “cross-terms” in the INT1 relations; the
simplest example is the following:
Consider a five component link L = L1 ∪ · · · ∪ L5 ⊂ S3 = ∂B4 such that
L1∪L2∪L3 forms a Borromean rings which is split from the component L4, and
L5 is a band sum of (positive) meridians to L3 and L4. In the 4–manifold gotten
by attaching 0-framed 2-handles to B4 along L, let Ai denote the immersed
2–sphere determined (up to homotopy) by the core of the 2-handle attached to
Li.
Now any three of the quadruple A1, A2, A3, A4 will have vanishing first or-
der triple λ1(Ai, Aj , Ak) in Λ1(3)/INT1(Ai, Aj , Ak) for any choice of distinct
i, j, k: Since A5 is dual to A3, the generator 2

1 >− 3 of Λ1(3) is killed by
INT1(A1, A2, A3); and for the other choices of 1 ≤ i < j < k ≤ 4 it is clear
that λ1(Ai, Aj , Ak) vanishes since Li∪Lj ∪Lk is a split link (so Ai, Aj , Ak can
be pulled apart).
But the first order quadruple λ1(A1, A2, A3, A4) = 2

1 >− 3 = − 2
1 >− 4

is non-zero in Λ1(4)/INT1(A1, A2, A3, A4) ∼= Z3, where the only non-trivial
INT1(A1, A2, A3, A4) relation is

2
1 >−λ0(A5, A3, A4) =

2
1 >− 3+ 2

1 >− 4 = 0.

Geometrically, any order 1 intersection in a Whitney tower on A1 ∪ A2 ∪ A3

can be killed by tubing A5 into a Whitney disk pairing intersection between
A1 and A2 to create a canceling order 1 intersection, but this also creates an
order 1 intersection between the Whitney disk and A4.

Documenta Mathematica 19 (2014) 941–992



984 Schneiderman and Teichner

8.2.4 Computing the INT1(A1, A2, A3, A4) relations

Choose a basis Sα for π2X (mod torsion), and define integers aαij,k :=
λ0(S

α
(i,j), Ak). Then each element of the subgroup INT1(A1, A2, A3, A4) <

Λ1(4) can be written

j
i >−λ0(

∑

α xα
ijS

α
(i,j), Ak, Al) = (

∑

α xα
ija

α
ij,k)

j
i >− k + (

∑

α xα
ija

α
ij,l)

j
i >− l

= (xij · aij,k)
j
i >− k + (xij · aij,l)

j
i >− l

where the coefficients in the last expression are dot products of vectors in Z
r,

with i, j, k, l distinct, and r the rank of π2X (mod torsion). Using the basis

{ 1
2 >− 3 , 1

2 >−4 , 1
3 >−4 , 2

3 >−4 }

for Λ1(4), the subgroup INT1(A1, A2, A3, A4) is the image of the linear map
Z6r −→ Z4:

















x12

x13

x41

x23

x24

x34

















7−→









a12,3 −a13,2 0 a23,1 0 0
a12,4 0 a41,2 0 a24,1 0
0 a13,4 a41,3 0 0 a34,1
0 0 0 a23,4 −a24,3 a34,2

























x12

x13

x41

x23

x24

x34

















where the multiplication of entries is the vector dot product in Zr.

8.3 Order 2 intersection relations.

Now consider a quadruple of immersed 2–spheres A = A1, A2, A3, A4 # X in
a simply connected 4–manifold X , such that λ1(A) = 0 ∈ Λ1(4)/INT1(A), so
that A supports an order 2 non-repeating Whitney tower W ⊂ X .

Recall that we want to describe order 2 intersection relations INT2(A) which
account for changes in the choice of Whitney tower on A and define the target
of λ2(A) ∈ Λ2(4)/INT2(A). Note that Λ2(4) is isomorphic to Z⊕Z, generated,
for instance, by the elements

t1 := 2
1 >−−−< 3

4 and t2 := 3
1 >−−−< 2

4,

with the IHX relation giving:

4
1 >−−−< 2

3 = t1 + t2.

We will mostly be concerned with the case that A is in the radical of λ0 on
π2X , so that for each i ∈ {1, 2, 3, 4} the order 0 pairing λ0(S,Ai) vanishes for
any immersed 2–sphere S, but first we make some quick general observations
related to Theorems 2 and 13 above.
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8.3.1 Tubing order 2 Whitney disks into spheres

Let i, j, k, l be distinct indices from {1, 2, 3, 4}. As already observed in the
proof of Theorem 13, W can be modified to have an additional clean order
2 Whitney disk W((i,j),k) without creating any new unpaired intersections. If
S((i,j),k) is any immersed 2–sphere, then tubingW((i,j),k) into S((i,j),k) preserves
the order of the Whitney tower and changes λ(W) by aijk · 〈((i, j), k), l〉, where
aijk = λ0(S((i,j),k), Al) ∈ Z (since any intersections between the new Whitney
disk W((i,j),k)#S((i,j),k) and Ai, Aj , Ak are repeating intersections).
Letting S((i,j),k) vary over a basis Sα for π2X (mod torsion) for distinct triples
i, j, k in {1, 2, 3, 4}, this construction generates a subgroup of Λ2(4) isomorphic
to dZ ⊕ dZ, where d is the greatest common divisor of λ0(S

α, Ai) over all S
α

and i. In particular, if these order 0 intersections are relatively prime, then the
target Λ2(4)/INT2(A) of λ2(A) is trivial:

Proposition 30 If A = A1, A2, A3, A4 admits an order 2 non-repeating Whit-
ney tower and if gcd({λ0(S

α, Ai)}α,i) = 1, then A can be pulled apart. �

8.3.2 Tubing order 1 Whitney disks into spheres

Again as in the proof of Theorem 13, for any choice of distinct indices W can be
modified to have two additional clean order 1 Whitney disks W(i,j) and W(k,l).
Tubing either of these Whitney disks into an arbitrary 2–sphere might create
unpaired order 1 non-repeating intersections (between A and the 2–sphere) and
hence not preserve the order of W , however tubing into 2–spheres created by
stabilization does indeed preserve the order (since intersections among order 1
Whitney disks are of order 2). In fact, a single stablization is all that is needed
to kill any obstruction to pulling apart the quadruple A1, A2, A3, A4:

Proposition 31 If A = A1, A2, A3, A4 admit an order 2 non-repeating Whit-
ney tower, then A can be pulled apart in the connected sum of X with a single

S2 × S2 (or a single CP
2, or a single CP

2
).

Proof: S2 × S2, or CP
2, or CP

2
. We will show how to change λ2(W) by any

integral linear combination a1t1 + a2t2 of the above generators t1, t2 of Λ2(4):
To create a1t1, first modify W to have two additional clean Whitney disks
W(1,2) and W(3,4), then tube W(1,2) into S, and tube W(3,4) into |a1|-many
copies of S′ (where the sign of a1 corresponds to the orientations of the copies

of S′). Note that in case of stabilization by CP
2 or CP

2
, the extra intersections

coming from taking |a1| copies of CP1 are all repeating intersections, so that
λ2(W) is indeed only changed by a1t1. Now, to further create a2t2 proceed
in the same way starting with two additional clean Whitney disks W(1,3) and
W(2,4), which are tubed into a parallel copy of the same S and |a2|-many copies
of S′. This will also create intersections with the previous copies of S and S′,
but these extra intersections will all be repeating intersections. (Any Whitney
disks tubed into copies of CP1 can be framed as in the proof of Theorem 2, see
section 7.2.) �
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Remark 32 By Poincaré duality the statement of Proposition 31 holds for a
single stabilization by taking the connected sum of X with any simply connected
closed 4–manifold other than S4.

From the observations just before Proposition 30, the existence of any non-
trivial order 0 intersections between any Ai and any 2–spheres in X implies
that the obstruction to pulling apart the Ai lives in a finite quotient of Λ2(4).
Returning to our goal of defining the INT2 relations which clarify Conjecture 15,
we will consider settings where the target for λ2(A) is potentially infinite.

8.3.3 Linear INT2 relations

Assume first that all order 0 non-repeating intersections λ0 on π2X vanish.
Let i, j, k, l denote distinct indices in {1, 2, 3, 4}.
Suppose that W(i,j) is an order 1 Whitney disk in W , and that W ′

(i,j) is a
different choice of order 1 Whitney disk with the same boundary as W(i,j) such
that all intersections W ′

(i,j) ∩Ak and W ′
(i,j) ∩Al are paired by order 2 Whitney

disks. Then replacing W(i,j) by W ′
(i,j), and replacing the order 2 Whitney disks

supported by W(i,j) with those supported by W ′
(i,j), changes W to another

order 2 non-repeating Whitney tower W ′ on A. The union of W(i,j) with
W ′

(i,j) along their common boundary is a 2–sphere S(i,j) = W(i,j) ∪W ′
(i,j) with

λ0(S(i,j), Ak, Al) = 0 ∈ Λ0((i, j), k, l) as pictured (schematically) in Figure 18.

S

W(i,j)

(i,j)

(k,l)

k
kl l

ij

Figure 18: Changing the interior ofW(i,j) to W ′
(i,j) corresponds to tubing W(i,j)

into a 2–sphere S(i,j). Only intersections which contribute to the difference
λ2(W)− λ2(W

′) ∈ Λ2(4) are shown.

Via the map Λ1((i, j), k, l) → Λ2(4) induced by sending (i, j)−< k
l to j

i >−−−< k
l ,
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the corresponding change λ2(W)−λ2(W
′) ∈ Λ2(4) is equal to the image of the

order 1 non-repeating intersection invariant λ1(S(i,j), Ak, Al), which is defined
in Λ1((i, j), k, l) since the vanishing of λ0 means that all INT1 relations are
trivial.

Similarly changing the interiors of any number of the order 1 Whitney disks in
W leads to the following definition, which makes Conjecture 29 precise in this
setting:

Definition 33 For a quadruple of 2–spheres A = A1, A2, A3, A4 # X with
λ1(A) = 0, with X simply connected and λ0 vanishing on π2X, define the
order 2 intersection relations INT2(A) < Λ2(4) to be the subgroup generated by

j
i >−λ1(S(i,j), Ak, Al)

over all choices of distinct i, j, k, l and all representatives S(i,j) of π2X.

This definition of INT2(A) describes all possible changes in the order 2 inter-
sections due to choices of Whitney disks for fixed choices of boundaries of order
1 Whitney disks (up to isotopy), so by Proposition 14 what remains to be done
to confirm Conjecture 29 in this case is to show that λ2(W) ∈ Λ2(4)/INT2(A)
is independent of the choice of order 1 Whitney disk boundaries.

8.3.4 Computing the linear INT2 relations

In this setting (where λ0 vanishes on π2X), the subgroup INT2(A) can be
computed as follows:

For a basis Sα for the rank r Z-module π2X (mod torsion), and integers aαij
defined by

λ1(S
α
(i,j), Ak, Al) = aαij (i, j)−−< k

l ,

the INT2(A) relations are described as the image of the linear map Z6r → Z2

given in the basis {t1, t2} = { 2
1 >−−−< 3

4 , 3
1 >−−−< 2

4 } by:

















x12

x34

x13

x24

x14

x23

















7→

(

a12 a34 0 0 a14 a23
0 0 a13 a24 a14 a23

)

















x12

x34

x13

x24

x14

x23

















where the multiplication of entries is vector inner product.

Examples in this setting realizing any coefficient matrix can be constructed by
attaching 2-handles to B4 along 0-framed links in S3 with vanishing linking
matrix.
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8.3.5 Quadratic INT2 relations

Now assume that the Ai represent elements in the radical of λ0 on π2X , but
that λ0 may otherwise be non-trivial.
We continue to investigate changes in order 2 intersections due to choices of
interiors of Whitney disks in W supported by A. Changing the interior of a
Whitney disk W(i,j) to W ′

(i,j) along their common boundary again leads to a 2–

sphere S(i,j) = W(i,j)∪W
′
(i,j) whose order 1 intersections with Ak, Al determine

λ2(W) − λ2(W
′) ∈ Λ2(4), but the order 1 invariant λ1(S(i,j), Ak, Al) that we

want to use to measure this change may now itself have indeterminacies coming
from non-trivial order 0 intersections between S(i,j) and any 2–spheres in X .
Specifically, λ1(S(i,j), Ak, Al) takes values in Λ1((i, j), k, l) modulo
INT1(S(i,j), Ak, Al), where the INT1(S(i,j), Ak, Al) relations are:

k
(i,j) >−λ0(S((i,j),k), Al) = 0 (1)

(i,j)
l >−λ0(S(l,(i,j)), Ak) = 0 (2)

l
k >−λ0(S(k,l), S(i,j)) = 0. (3)

Note that the first two relations are empty by our assumption that the Ai

have vanishing order 0 intersections with all 2–spheres. The third relation
corresponds to indeterminacies in λ1(S(i,j), Ak, Al) due to the choice of interiors
of order 1Whitney disks pairingAk∩Al, so computing with the order 1Whitney
disks W(k,l) in W determines a lift λW

1 (S(i,j), Ak, Al) ∈ Λ1((i, j), k, l). Mapping

(i, j)−< k
l to j

i >−−−<
k
l , we have:

λ2(W)− λ2(W
′) = j

i >−λW
1 (S(i,j), Ak, Al) ∈ Λ2(4).

Now consider changing both W(i,j) to W ′
(i,j), and some W(k,l) to W ′

(k,l) in

as illustrated in Figure 19 (recall that i, j, k, l are distinct). The resulting
change ∆W(S(i,j), S(k,l)) := λ2(W) − λ2(W

′) ∈ Λ2(4) can be expressed as
∆W(S(i,j), S(k,l)) =

j
i >−λW

1 (S(i,j), Ak, Al) + j
i >−λ0(S(i,j), S(k,l))−<

k
l +λW

1 (Ai, Aj , S(k,l))−<
k
l

Here the 2–sphere S(k,l) determined by W(k,l) and W ′
(k,l) contributes the right-

hand term λW
1 (Ai, Aj , S(k,l)) just as discussed above for S(i,j), but now there

is also a “cross-term” coming from order 0 intersections between S(i,j) and
S(k,l). As in the previous paragraph λW

1 (S(i,j), Ak, Al) and λW
1 (Ai, Ak, S(k,l))

are lifts of the corresponding order 1 invariants. The three homotopy invariants
λ1(S(i,j), Ak, Al), λ1(Ai, Aj , S(k,l)), and λ0(S(i,j), S(k,l)) are independent, so the
given expression for ∆W(S(i,j), S(k,l)) only depends on W and the homotopy
classes of S(i,j) and S(k,l).
Observe that, since the intersection invariants sum over contributions from the
Whitney disks, this entire discussion applies word for word to changing all the
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S

W
S

W(i,j)

(i,j)

(i,j)

(k,l)

(k,l)
(k,l)

k
l i j

ij k
l

Figure 19: A schematic illustration of how order 0 intersections between S(i,j)

and S(k,l) can contribute order 2 indeterminacies. (Only relevant intersections
are shown.)

first order Whitney disks W(i,j) on Ai and Aj , and all the first order Whitney
disks W(k,l) on Ak and Al; with the 2–spheres S(i,j) and S(k,l) interpreted
as sums (geometrically: unions) of the 2–spheres determined by each pair of
Whitney disks.

Definition 34 For a quadruple of 2–spheres A = A1, A2, A3, A4 # X with
X simply connected and A in the radical of λ0 on π2X, define the order 2
intersection relations INTW

2 (A) < Λ2(4) to be the subset

INTW
2 :=

⋃

{−∆W(S(1,2), S(3,4))−∆W(S(1,3), S(2,4))−∆W(S(1,4), S(2,3))}

⊂ Λ2(4).

where (i, j), (k, l) vary over the pair-choices (1, 2), (3, 4), and (1, 3), (2, 4) and
(1, 4), (2, 3); and where S(i,j) and S(k,l) vary over all (homotopy classes of)
2–spheres in X.

Note that, as defined, INTW
2 is only a subset of Λ2(4).

Since the above construction can be carried out simultaneously for the three
pair-choices, it follows that if λ2(W) ∈ INTW

2 , then it can be arranged that the
Ai support W

′ with λ2(W
′) = 0 ∈ Λ2(4), so the Ai can be pulled apart.

Since INTW
2 always contains the zero element of Λ2(4), the statement of Con-

jecture 29 makes sense, with INTW
2 taking the place of INT2(A). It would be

desirable to have a formulation of the general INT2 relations just in terms of
A, rather than W .
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In the case that all order 0 intersections vanish on π2X , then INTW
2 reduces

to the subgroup INT2(A) < Λ2(4) of Definition 33.

8.3.6 Computing the quadratic INT2 relations

In this setting, INTW
2 can be computed as follows:

For a basis Sα for the rank r Z-module π2X (mod torsion), let Q = qαβ =
λ0(S

α, Sβ) denote the intersection matrix. For integers aαij defined by

λW
1 (Sα

(i,j), Ak, Al) = aαij (i, j)−−< k
l

we have the formula

∆W (
∑

α xα
ijS

α
(i,j),

∑

β x
β
klS

β

(k,l)) =

=
∑

α xα
ija

α
ij +

∑

β x
β
kla

β
kl +

∑

α

∑

β x
α
ijx

β
klq

αβ

= xij · aij + xkl · akl + xijQxT
kl

where the xuv and auv are vectors in Zr.
Using the basis {t1, t2} = { 2

1 >−−−< 3
4 , 3

1 >−−−< 2
4 } for Λ2(4), computing INTW

2

amounts to determining the image of the map Z6r → Z2:
















x12

x34

x13

x24

x14

x23

















7→

(

a12 a34 0 0 a14 a23
0 0 a13 a24 a14 a23

)

















x12

x34

x13

x24

x14

x23

















+

(

x12QxT
34 + x14QxT

23

x13QxT
24 + x14QxT

23

)

where the multiplication of entries is vector inner product.
For example, in the easiest case where just a single 2–sphere generator S has
non-trivial self-intersection number λ0(S, S

′) = q 6= 0 ∈ Z, we have that INTW
2

is the image of the map Z6 → Z2 given by:
















x12

x34

x13

x24

x14

x23

















7→

(

a12 a34 0 0 a14 a23
0 0 a13 a24 a14 a23

)

















x12

x34

x13

x24

x14

x23

















+ q

(

x12x34 + x14x23

x13x24 + x14x23

)

Examples in this setting realizing any coefficient matrix can be constructed
by attaching 2-handles to B4 along links in S3, and the following questions
arise: Is this image always a subgroup of Z ⊕ Z? Konyagin and Nathanson
have shown in [21, Thm.3] that the image always projects to subgroups in each
Z-summand. And under what conditions will the image be all of Z⊕ Z? This
would imply that the Ai can be pulled apart. What about analogous questions
in the general case where the equations are coupled by the intersection matrix
Q?
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