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Abstract. In a 1999 paper, Bercovici and Pata showed that a natural

bijection between the classically, free and Boolean infinitely divisible mea-

sures held at the level of limit theorems of triangular arrays. This result was

extended to include monotone convolution by the authors in [AW14]. In re-

cent years, operator-valued versions of free, Boolean and monotone proba-

bility have also been developed. Belinschi, Popa and Vinnikov showed that

the Bercovici-Pata bijection holds for the operator-valued versions of free

and Boolean probability. In this article, we extend the bijection to include

monotone probability theory even in the operator-valued case. To prove this

result, we develop the general theory of composition semigroups of non-

commutative functions and largely recapture Berkson and Porta’s classical

results on composition semigroups of complex functions in operator-valued

setting. As a byproduct, we deduce that operator-valued monotonically in-

finitely divisible distributions belong to monotone convolution semigroups.

Finally, in the appendix, we extend the result of the second author on the

classification of Cauchy transforms for non-commutative distributions to the

Cauchy transforms associated to more general completely positive maps.
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1. INTRODUCTION

It is a remarkable fact that there are natural bijections between the classes of infinitely

divisible measures in each of the four universal non-commutative probability theories,

which not only arise from the Lévy-Hinc̆in representations of the measures, but are

maintained at the level of limit theorems of triangular arrays. This is made precise in

the following theorem:

Theorem 1.1. Fix a finite positive Borel measure σ on R, a real number γ,

a sequence of probability measures {µn}n∈N, and a sequence of positive integers

k1 < k2 < · · · . The following assertions are equivalent:

(a) (Classical / tensor) The sequence µn ∗ µn ∗ · · · ∗ µn
︸ ︷︷ ︸

kn

converges weakly to

νγ,σ∗ ;

(b) (Free) The sequence µn ⊞ µn ⊞ · · ·⊞ µn
︸ ︷︷ ︸

kn

converges weakly to νγ,σ
⊞

;

(c) (Boolean) The sequence µn ⊎ µn ⊎ · · · ⊎ µn
︸ ︷︷ ︸

kn

converges weakly to νγ,σ⊎ ;

(d) (Monotone) The sequence µn ⊲ µn ⊲ · · ·⊲ µn
︸ ︷︷ ︸

kn

converges weakly to νγ,σ⊲ ;

(e) The measures

kn
x2

x2 + 1
dµn(x) → σ

weakly, and

lim
n↑∞

kn

∫

R

x

x2 + 1
dµn(x) = γ.

Here νγ,σ∗ , νγ,σ
⊞

, νγ,σ⊎ , νγ,σ⊲ are probability measures defined explicitly through their

complex-analytic transforms. The equivalence of classical, free, and Boolean limit

theorems in parts (a), (b), (c) and (e) was proven in a by now classic paper due to

Bercovici and Pata [BP99]. The monotone non-commutative probability theory is of

more recent provenance [Mur00, Mur01]. The inclusion of part (d) was proven in our

recent paper [AW14].

Voiculescu developed operator-valued notions of non-commutative probability

[Voi87] where probability measures are replaced by certain completely positive maps

from the ring of non-commutative polynomials over a C∗-algebra. An analogous

theorem in this more general setting, namely the equivalence of parts (b) and (c), was

proven in [BPV12]. The first main result in this paper is the inclusion of (d) at this

level of generality.

In order to study monotone infinitely divisible B-valued distributions, we must first

develop the theory of composition semigroups of non-commutative functions in a

manner analogous to Berkson and Porta’s study of these semigroups at the level of

complex functions [BPo78]. This stems from the fact that the convolution operation

for monotone probability theory satisfies the following relation for the associated F -

transforms,

Fµ⊲ν = Fµ ◦ Fν ,
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so that infinitely-divisible distributions form such a composition semigroup. In the

second main result of the paper, we prove that any monotone infinitely-divisible dis-

tribution can be included in such a semigroup. Note that even in the scalar-valued

case, this is a recent result, proved by Serban Belinschi in his thesis. Finally, we char-

acterize generators of such composition semigroups, and a smaller set of generators

of composition semigroups of F -transforms.

In Section 2, we provide background and preliminary results. In section 3, we study

composition semigroups of vector-valued and non-commutative analytic functions.

The main results of this section are Proposition 3.3, which shows that there is a nat-

ural notion of a time derivative for semigroups of vector-valued analytic functions

{ft}t≥0, and Theorem 3.5, which proves that, in the case of F -transforms and more

general self-maps of the complex upper half plane, these semi-groups are in bijection

with certain classes of functions defined through their analytic and asymptotic proper-

ties. This bijection provides a Lévy-Hinc̆in representation for these infinitely divisible

distributions. In section 4 we prove the main result of the paper, namely the extension

of Theorem 1.1 to the operator-valued case. In contrast to the previous section, this

is achieved through a combinatorial methodology. We close the paper with the Ap-

pendix, which is primarily concerned with the extension of the main result in [Wil13],

namely the classification of the Cauchy transforms associated to B-valued distribu-

tions, to a more general class of functions including the Cauchy transforms associated

to more general CP maps.

Acknowledgements. We are grateful to the referee for helpful comments.

2. PRELIMINARIES

Let B denote a unital C∗-algebra and X a self-adjoint symbol. We will define the

ring of noncommutative polynomials B〈X〉 as the algebraic free product of B and X .

B0〈X〉 are polynomials in B〈X〉 with zero constant term.

Definition 2.1. Let µ : B〈X〉 → B denote a linear map. We say that µ is exponen-

tially bounded with constant M if

(1) ‖µ(b1Xb2 · · ·Xbn+1)‖ ≤ Mn‖b1‖‖b2‖ · · · ‖bn+1‖
We abuse terminology and say that the map µ is completely positive (CP) if

(2) (µ⊗ 1n)
([

Pi(X)P ∗
j (X)

]n

i,j=1

)

≥ 0

for every family Pi(X) ∈ B〈X〉.
We define a set Σ0 to be those B-bimodular linear maps µ satisfying (1) and (2).

For a general introduction to non-commutative functions, we refer to [KVV14].

Throughout, B,A shall denote unital C∗-algebras. Let Mn(B) denote the n× n ma-

trices with entries in B. We define the noncommutative space over B to be the set

Bnc = {Mn(B)}∞n=1. A non-commutative set is a subset Ω ⊂ Bnc that respects

direct sums. That is, for X ∈ Ω ∩ Mn(B) and Y ∈ Ω ∩ Mp(B) we have that

X ⊕ Y ∈ Ω ∩ Mn+p(B). We note that these definitions apply to the more gen-

eral case of B being any unital, commutative ring, but we focus on the C∗-algebraic
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setting. Given b ∈ Mn(B), the non-commutative ball of radius δ about b is the set

Bnc
δ (b) := ⊔∞

k=1Bδ(⊕kb) where Bδ(⊕kb) ⊂ Mnk(B) is the standard ball of radius δ.

A non-commutative function is a map f : Ω → Anc with the following properties:

(a) f(Ωn) ⊂ Mn(A)
(b) f respects direct sums : f(X ⊕ Y ) = f(X)⊕ f(Y )
(c) f respects similarities: For X ∈ Ωn and S ∈ Mn(C) invertible we have that

f(SXS−1) = Sf(X)S−1

provided that SXS−1 ∈ Ωn.

A non-commutative function is said to be locally bounded in slices if, for every n and

element x ∈ Ωn, f |Ωn
is bounded on some neighborhood of x in the norm topol-

ogy. It is a remarkable fact originally due to Taylor ([Tay72], [Tay73]) that a non-

commutative function that is Gâteaux differentiable and locally bounded in slices is in

fact analytic. A non-commutative function is uniformly analytic at b ∈ Mn(B) if it is

analytic and bounded on Bnc
r (b) for some r > 0.

Let M+,ǫ
n (B) ⊂ Mn(B) denote those element b ∈ Mn(B) with ℑ(b) > ǫ1n and

M+
n (B) = ∪ǫ>0M

+,ǫ
n . We form a non-commutative set

H+(B) = ⊔∞
n=1M

+
n (B)

and refer to this set as the non-commutative upper half plane.

We define a family of sets in H+(B). For α, ǫ > 0 define a non-commutative Stolz

angle to be

Γ(n)
α,ǫ := {b ∈ M+,ǫ

n (B) : ℑ(b) > αℜ(b)}.
Let µ ∈ Σ0. We define the Cauchy transform of µ to be the analytic, non-commutative

function Gµ = {G(n)
µ }∞n=1 such that

G(n)
µ (b) := (µ⊗ 1n)((b −X ⊗ 1n)

−1) : H+(B) 7→ H−(B).
From this map, we may construct the moment generating function, the F-transform,

the Voiculescu transform and the R-transform respectively through the following

equalities:

H(n)(b) := G(n)(b−1) : H−(B) 7→ H−(B)
F (n)(b) := G(n)(b)−1 : H+(B) 7→ H+(B)

ϕ(n)
µ (b) := (F (n)

µ )〈−1〉(b)− b

R(n)
µ (b) := ϕ(n)

µ (b−1)

where the superscript 〈−1〉 refers to the composition inverse. We also note that the

moment generating function extend to a neighborhood of 0 for µ ∈ Σ0 and that the

Voiculescu-transform is only defined on a subset of H+(B). The following result,

proven in [Wil13] and [PV13], classifies the F -transforms in terms of their analytic

and asymptotic properties.

Theorem 2.1. Let f = (f (n)) : H+(B) → H+(B) denote an analytic, noncommu-

tative function. The following conditions are equivalent.

(a) f = Fµ for some µ ∈ Σ0.
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(b) The noncommutative function k = (k(n))∞n=1 defined by k(n)(b) :=
(f (n)(b−1))−1 has uniformly analytic extension to a neighborhood of 0. More-

over, for any sequence {bk}k∈N with ‖b−1
k ‖ ↓ 0, b−1

k f (n)(bk) → 1n in norm.

(c) There exists an α ∈ B and a σ : B〈X〉 → B which satisfies (1) and (2) such that,

for all n ∈ N,

f (n)(b) = α1n + b− (σ ⊗ 1n)(b(1 −Xb)−1).

Moreover, the map σ in (c) is of the form σ(P (X)) = ρ(XP (X)X) for ρ such that

its restriction to B0〈X〉 is positive.

We will require several classical results in complex function theory to prove our re-

sults. Theorem 3.16.3 in [HP74] is a useful analogue of the classical Cauchy estimates

in complex analysis. We also refer to this reference for an overview of the differential

structure of vector valued functions, including the higher order derivative δn utilized

below.

Theorem 2.2. Let f be Gâteaux differentiable in U and assume that ‖f(x)‖ ≤ M
for x ∈ U . Then

‖δnf(a;h)‖ ≤ Mn!

for a+ h ∈ U .

Further, theorem 3.17.17 in [HP74] provides Lipschitz estimates for analytic func-

tions. Indeed, for an analytic function f that is locally bounded by M(a) in a neigh-

borhood of radius ra, we have that

(3) ‖f(y)− f(x)‖ ≤ 2M(a)‖x− y‖
ra − 2‖x− y‖

Notation 2.2. We define a family Λ of functions Φ : H+(B) → H−(B) through

the following properties:

(i) The map R(b) := Φ(b−1) has uniformly analytic continuation to a non-

commutative ball about 0 with R(b)∗ = R(b)
(ii) For any sequence {bk}k∈N ∈ B with ‖b−1

k ‖ ↓ 0, we have that b−1
k Φ(bk) → 0.

We also define a larger family of functions Λ̃ by replacing (i) and (ii) with the follow-

ing weaker conditions

(I) For any ǫ > 0, Φ is uniformly bounded on ⊔∞
n=1M

+,ǫ
n (B).

(II) For any α, ǫ > 0 and a sequence {bk}k∈N ∈ Γ
(n)
α,ǫ with ‖b−1

k ‖ ↓ 0, we have that

b−1
k Φ(bk) → 0.

Definition 2.3. Let µ, ν ∈ Σ0. We define the monotone convolution to be the non-

commutative operation (µ, ν) 7→ µ⊲ ν ∈ Σ0 defined implicitly though the equality

Fµ⊲ν := Fµ ◦ Fν .

Note that this definition uses Theorem 2.1 in an essential way, to show that a

composition of F -transforms is an F -transform. See Section 4 and references

[Pop08, HS11, Pop12, HS14] for the relation between this definition and monotone

independence of Muraki.
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Definition 2.4. We say that µ is a ⊲-infinitely divisible distribution if, for every n,

there exists a distribution µn ∈ Σ0 such that

(4) µ = µn ⊲ µn ⊲ · · ·⊲ µn
︸ ︷︷ ︸

n times

We define a composition semigroup of F -transforms {Ft}t∈Q+ by letting Fp/q :=
F ◦p
µq

where µ = µ⊲q
q for all p, q ∈ N. We will show in Theorem 3.5 that this semigroup

extends to an R+ semigroup, which moreover is generated by a function Φ ∈ Λ in a

sense that will be made specific. Moreover, one of the main results in [Wil13] is that

the set Λ is exactly the set of Voiculescu transforms associated to ⊞-infinitely divisible

distributions. This is not a coincidence and will drive the main result of this paper.

3. LÉVY-HINC̆IN REPRESENTATIONS FOR SEMIGROUPS OF NON-COMMUTATIVE

FUNCTIONS.

We begin this section with a result showing that the divisors of ⊲-infinitely divisible

distributions maintain the same exponential bound. A similar result can be proven in

the combinatorial setting of Section 4 in an easier manner, but the bound is less sharp.

Proposition 3.1. Let µ denote a ⊲-infinitely divisible distribution with exponential

bound M . Then, for each k, the distribution µk satisfying µ = µ⊲k
k has exponential

bound M .

Proof. Let Xb1Xb2 · · · bn−1X = Q(X) ∈ B〈X〉 such that ‖b1‖ = ‖b2‖ =
· · · ‖bn−1‖ = 1 and assume, for the sake of contradiction, that ‖µk(Q(X))‖ > Mn.

Then, using the Schwarz inequality for 2-positive maps, we have that

‖µk(Q
∗(X)Q(X))‖‖µk(1)‖ ≥ ‖µk(Q(X))µk(Q

∗(X))‖
= ‖µk(Q(X))‖2 > M2n

Since µk(1) = 1, we may assume that our monomial P (X) =
Xb1Xb2 · · · bn−1X

2b∗n−1X · · · b∗1X has the property that µk(P (X)) > M2n.

Define an element B ∈ M2n(B) by

B =


















0 1 0 0 0 0 0 · · · 0
1 0 b1 0 0 0 0 · · · 0
0 b∗1 0 1 0 0 0 · · · 0
0 0 1 0 b2 0 0 · · · 0
0 0 0 b∗2 0 1 0 · · · 0
0 0 0 0 1 0 b3 · · · 0

...
...

...

0 0 0 0 0 · · · b∗n−1 0 1
0 0 0 0 0 · · · 0 1 0


















.

That is, the superdiagonal alternates between 1 and bi, the subdiagonal alternates be-

tween 1 and b∗i . Now, let 0 < ǫ, δ and

Bδ,ǫ = δB + ǫ

(
2n−1∑

i=1

ei,i

)

+
e2n,2n
δn−1
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where ǫ is arbitrarily small and δ is chosen so that Bδ,ǫ is a strictly positive element.

Moreover, we have that

e1,1(Bδ,ǫ(X ⊗ 12n)Bδ,ǫ)
2ne1,1 = e1,1Bδ,ǫ[(X ⊗ 12n)B

2
δ,ǫ]

2n−1(X ⊗ 12n)Bδ,ǫe1,1

(5)

= P (X) +O(max (δ, ǫ)).

To see this, note that a non-trivial contribution to (5) must be of the form

b1,2Xb2,j3bj3,j4Xbj4,j5X · · · bj4n−2,j4n−1bj4n−1,2Xb2,1

where bi,j denotes the i, j entry of Bδ,ǫ. Now, such a non-zero term is not

O(max (δ, ǫ)) means that bjℓ,jℓ+1
must equal b2n,2n for two distinct ℓ. However, the

only possible way for this to occur is if jk = k for k = 2, . . . , 2n, j2n = j2n+1 =
j2n+2 = 2n and jp = 4n+ 2− p for p = 2n+ 2, . . . , 4n− 1.

By assumption, there exists a state φ ∈ B∗ such that φ(µk(P (X))) > M2k. Thus, for

ǫ small enough, we have that

(6) φ1,1 ◦ (µk ⊗ 12n)((Bδ,ǫ(X ⊗ 12n)Bδ,ǫ)
2n) > M2n

(here φ⊗e1,1 = φ1,1). This implies that the scalar valued Cauchy transform associated

to this random variable,

Gδ,ǫ
µk
(z) = φ1,1 ◦ (µk ⊗ 12n)((z12n −Bδ,ǫ(X ⊗ 12n)Bδ,ǫ)

−1)

arises from a measure whose support has non-trivial intersection with R \ [−M,M ],
whereas the (similarly defined) Gδ,ǫ

µ has support contained in [−M,M ] (since its mo-

ments have growth rate smaller than powers of M ). Using Stieltjes inversion, this

implies that

(7) lim
t↓0

−ℑGδ,ǫ
µk
(x+ it) > 0

for some x > M (or the limit simply does not exist in the atomic case).

Calculating the imaginary part of this Cauchy transform, we have

ℑ([µk((z12n −Bδ,ǫXBδ,ǫ)
−1)]−1) = B−1

δ,ǫℑ([µk(B
−2
δ,ǫ z −X)−1]−1)B−1

δ,ǫ

= B−1
δ,ǫℑF (n)

µk
(zB−2

δ,ǫ )B
−1
δ,ǫ

≤ B−1
δ,ǫℑF (n)

µ (zB−2
δ,ǫ )B

−1
δ,ǫ

= ℑ([µ((z12n −Bδ,ǫXBδ,ǫ)
−1)]−1)(8)

where the inequality follows from the fact that Fµ = F ◦k−1
µk

◦ Fµk
and F -transforms

increase the imaginary part.

Rewriting the right hand side of (8), we have that

ℑ([µ((z12n −Bδ,ǫXBδ,ǫ)
−1)]−1)

= [µ((z12n −Bδ,ǫXBδ,ǫ)
−1)∗]−1·

ℑ(µ((z12n −Bδ,ǫXBδ,ǫ)
−1))[µ((z12n −Bδ,ǫXBδ,ǫ)

−1)]−1(9)

= F δ,ǫ
µ (z)∗ℑ(F δ,ǫ

µ (z))F δ,ǫ
µ (z)
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We conclude that

(10) ℑ([µ((z12n −Bδ,ǫXBδ,ǫ)
−1)]−1) ≤ F δ,ǫ

µ (z)∗ℑ(F δ,ǫ
µ (z))F δ,ǫ

µ (z).

Since F δ,ǫ
µ extends to R \ [−M,M ]

lim
t↓0

Gδ,ǫ
µ (x+ it)

converges to a positive element in B and

lim
t↓0

ℑ(F δ,ǫ
µ (x+ it)) → 0

it follows that the right hand side or (10) converges to 0 in norm, contradicting (7).

This completes our proof. �

Proposition 3.2. Let µ, µk be as in the preceding proposition. We have that

Fµk
→ Id in norm as k ↑ ∞ uniformly on M+,ǫ

n (B), and this convergence is also

uniform over n . Moreover, the functions F
(n)
µk (b−1) − b−1 and F

(n)
µk (b−1)−1 extend

analytically to Bnc
r (0), where the radius r is dependent only on M from Proposi-

tion 3.1, and satisfy

(11) F (n)
µk

(b−1)− b−1 → 0n

(12) F (n)
µk

(b−1)−1 = H(n)
µk

(b) → b

where this convergence is uniform on Bnc
r (0).

Proof. Consider the Nevanlinna representations of each of these functions

(13) F (n)
µk

(b) = αk ⊗ 1n + b−G(n)
ρk

(b)

defined in Theorem 2.1 , where we have adopted the notation that µ = µ1. We claim

that the distributions ρk share a common exponential bound N for all k ∈ N.

To prove this claim, first observe that, by Theorem 4.1 in [Wil13], there exist distribu-

tions νk such that

b − F (n)
µk

(b) = ϕ(n)
νk

(b) = −αk ⊗ 1n +G(n)
ρk

(b).

Moreover, it was shown in [PV13] that if the ν and the νk have a common exponential

bound N then the distributions ρ and ρk have a common exponential bound N2 + 1.

Focusing on the νk, we may manipulate equations 13 to conclude that

(14) Rνk(b
−1) = ϕνk(b) = b−1 − Fµk

(b−1).

Now, expand the moment series

(15) F (n)
µk

(b−1)−1 = H(n)
µk

(b) =

∞∑

p=0

µk((bX)pb).

Note that Proposition 3.1 implies that this function is convergent and uniformly

bounded for b ∈ Bnc
r (0), independent of k.

Observe that the moment generating function satisfies

(16)

[H(n)
µk

(b)]−1 = b−1−µk(X)+µk(X)bµk(X)−µk(XbX)+ · · · = b−1+f (n)(b,X)
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where f (n)(b,X) is analytic in b and converges for ‖b‖ small, where the radius of

convergence is only dependent on M . Thus, [H
(n)
µk (b)]−1 − b−1 extends to a neigh-

borhood of 0 whose radius is independent of n and k and agrees with F
(n)
µk (b−1)−b−1

when b is invertible. Moreover, these observations, combined with (14) imply that the

functions Rνk have a common R,C > 0 such that the functions extend to a common

domain Bnc
R (0) with a common bound C. Now a careful look at the Kantorovich ar-

gument in part II of the proof of Theorem 4.1 in [Wil13] allows us to conclude that

the exponential bound on the distributions νk depend only on R, proving our claim.

Recall that Fµk
◦ · · · ◦ Fµk

= Fµ we have that

(17) G(n)
ρ (b) = G(n)

ρk
(b) +G(n)

ρk
◦ F (n)

µk
(b) + · · ·+G(n)

ρk
◦ F (n)

µk
◦ · · · ◦ F (n)

µk
︸ ︷︷ ︸

k−1 times

(b)

Letting b = z1n for z ∈ C, we have that

lim
|z|↑∞

zH(n)
ρ

(
1

z
1n

)

= lim
|z|↑∞

zG(n)
ρ (z1n)

= lim
|z|↑∞

k−1∑

ℓ=1

zG(n)
ρk

◦ (F (n)
µk

)◦ℓ(z1n)

= lim
|z|↑∞

k−1∑

ℓ=1

zH(n)
ρk

(

[(F (n)
µk

)◦ℓ(z1n)]
−1
)

= lim
|z|↑∞

k−1∑

ℓ=1

zH(n)
ρk

◦G(n)
νℓ

(z1n)

= lim
|w|↓0

k−1∑

ℓ=1

1

w
H(n)

ρk
◦G(n)

νℓ

(
1

w
1n

)

= lim
|w|↓0

k−1∑

ℓ=1

1

w
H(n)

ρk
◦H(n)

νℓ (w1n)

where [(F
(n)
µk )◦ℓ]−1 = Gνℓ is the Cauchy transform of a distribution νℓ ∈ Σ0 (this

follows from Theorem 2.1). Moreover, we have that

lim
|w|↓0

1

w
H(n)

νℓ (w1n) = 1n

so that, passing to limits and utilizing the chain rule and the fact that H
(n)
νℓ (0n) = 0n

, we have that

δH(n)
ρ (0n; 1n) = kδH(n)

ρk
(0n; 1n)

Utilizing the main result in our appendix, Theorem A.1, we conclude that

(18) ρ(1) = µ(X2) = kµk(X
2) = kρk(1).

so that ρk(1) = O(1/k).
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Now, assume that b ∈ M+,ǫ
n (B). We claim that ‖b−1‖ ≤ 1/ǫ. Indeed, observe that,

for b = x+ iy with y > ǫ1n,

(19) b =
√
y(i+ (

√
y)−1x(

√
y)−1)

√
y

(it follows easily from this equation that b is invertible, but this is known). Thus,

(20) b−1 = (
√
y)−1(i+ (

√
y)−1x(

√
y)−1)−1(

√
y)−1.

Now, utilizing the spectral mapping theorem and the fact that the spectral radius agrees

with the norm for normal operators, we have that ‖(√y)−1‖ ≤ (
√
ǫ)−1. Moreover,

since i + (
√
y)−1x(

√
y)−1 is normal and has spectrum with imaginary part larger

than 1, we have that (i + (
√
y)−1x(

√
y)−1)−1 is normal and, by the same spectral

considerations, has norm bounded by 1. These observations, combined with (19)

imply our claim.

Thus, for b ∈ M+
n (B), we have

‖F (n)
µk

(b)− b‖ ≤ ‖αk‖+ ‖(ρk ⊗ 1n)((b −X)−1‖
≤ ‖α‖/k + ‖(b−X)−1‖‖(ρk ⊗ 1n)(1n)‖

≤ ‖α‖
k

+
‖ρk(1)‖

ǫ
=

‖α‖+ ρ(1)/ǫ

k

and the right hand side converges to zero uniformly over M+,ǫ
n (B), independent of n.

Regarding the second part of our Proposition, we first observe that each of the mo-

ments of µk converges to 0. Indeed, utilizing the Schwarz inequality for 2-positive

maps as well as Proposition 3.1, we have that

‖µk(Xb1Xb2X · · · bℓX)‖2 ≤ ‖µk(X
2)‖‖µk(Xb∗ℓX · · · b∗2Xb∗1b1Xb2X · · · bℓX)‖

≤ ‖µ(X2)‖M2ℓ‖b1‖2‖b2‖2 · · · ‖bℓ‖2
k

Moreover, the tail of the series expansion of f (n)(b,X) is bounded in norm inde-

pendent of n and k . the individual entries all go to 0 so the we conclude that

f (n)(b,X) → 0 uniformly on b ∈ Bnc
r (0) as k ↑ ∞ so that we can immediately

conclude that (12) holds. This completes our proof. �

We next prove a differentiation result for vector valued functions. We adapt a proof

found in [BPo78] of a similar result for complex functions.

Proposition 3.3. Let A and B denote unital Banach algebras. Consider an open

subset Ω ⊂ A. Let ft : Ω 7→ B for all t ≥ 0 be a composition semigroup of analytic

functions. Assume that for every b′ ∈ Ω, there exists a δ > 0 such that

(a) limt↓0 ft(b)− b → 0 uniformly over b ∈ Bδ(b
′)

(b) For any T > 0, we have that ft(b)− b is uniformly bounded over b ∈ Bδ(b
′) and

t ∈ [0, T ].

Then, there exists an analytic Φ : Ω 7→ B such that

(21)
dft(b)

dt
= −Φ(ft(b)).
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Proof. Fix b′ ∈ Ω. We first claim that there exists an α > 0 such that

(22) ‖f2t(b)− 2ft(b) + b‖ ≤ 1

10
‖ft(b)− b‖.

for all t ∈ [0, α] and b ∈ Bδ/2(b
′) where the value of δ comes from the statement .

Indeed, fix b ∈ Bδ/2(b
′). We first consider the simple case when there exists a se-

quence tn ↓ 0 such that ftn(b) = b. Since {ft} form a composition semigroup, this

property then holds for a dense set of t’s, and by continuity assumption in part (a), for

all t > 0. So (22) holds trivially.

Thus, suppose that ft(b) 6= b for t ∈ [0, α]. Define a family of complex functions gt
through the following equalities:

ht :=
ft(b)− b

‖ft(b)− b‖ ; gt(ζ) := ft(b+ ζht)− b : Bδ/2(0) 7→ B.

where Bδ/2(0) refers to the neighborhood of zero in the complex plane. Note that,

since we are taking a ball of radius δ/2, we may define ht for all such b provided that

our choice of α is small enough.

Consider the vector valued complex integral

(23)

∫ ‖ft(b)−b‖

0

d

dζ
[gt(ζ)− ζht]dζ.

By (a) and the Cauchy estimates in Theorem 2.2, the integrand can be made arbitrarily

small for t small. By the fundamental theorem, this integral is equal to

gt(‖ft(b)− b‖)− gt(0)− (ft(b)− b) =

= ft(b + (ft(b)− b))− b− 2(ft(b)− b) = f2t(b)− 2ft(b) + b.

Using our bound on the integrand, equation (22) follows immediately.

We now use (22) to prove that for α > 0 there exists an M > 0 such that

(24) ‖ft(b)− b‖ ≤ Mt2/3

for all t ∈ [0, α] and b ∈ Bδ/2(b
′). Indeed, pick t ∈ [0, α] and m ∈ N such that

2mt ≤ α < 2m+1t. Note that inequality (22) and the triangle inequality imply that

2‖ft(b)− b‖ − ‖f2t(b)− b‖ ≤ ‖f2t(b)− 2ft(b) + b‖ ≤ 1

10
‖ft(b)− b‖

so that

(25) ‖ft(b)− b‖ ≤ 10

19
‖f2t(b)− b‖ ≤ 2−2/3‖f2t(b)− b‖

Using this estimate inductively, we have

‖ft(b)−b‖ ≤ 2−2/3‖f2t(b)−b‖ ≤ · · · ≤ 2−2m/3‖f2mt(b)−b‖ = t2/3
(

1

2mt

)2/3

M ′

where M ′ is a bound on ‖fs(b) − b‖ for s ≤ 2 which exists by (b). Equation (24)

follows with M = 22/3M ′/α.

Now, revisiting the argument for (22), inequality (24) implies that the integrand in

(23) has bound equal to

2Mt2/3
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as a result of the Cauchy estimates. Thus, we have the following:

(26) ‖f2t(b)− 2ft(b) + b‖ ≤ 2t2/3‖ft(b)− b‖ ≤ 2Mt4/3.

We may further conclude that

(27)

∥
∥
∥
∥

f2t(b)− b

2t
− ft(b)− b

t

∥
∥
∥
∥
≤ Mt1/3

Thus, we have that

(28) lim
k↑∞

2k(f2−k(b)− b)

converges uniformly on Bδ/2(b
′) and we refer to this limit as −Φ(b).

Using (27), we note that Φ is locally bounded. Indeed, we have that

‖2p(f1/2p(b)− b) + Φ(b)‖ ≤
∞∑

k=p

‖2k(f1/2k(b)− b)− 2k+1(f1/2k+1(b)− b)‖

≤ M

2

∞∑

k=p

(
1

21/3

)k

= MC(p).(29)

for all b ∈ Bδ/2(b
′). Local boundedness of Φ follows since (f1/2p(b) − b) is locally

bounded. Also note that C(p) → 0 as p ↑ ∞.

Regarding analyticity of Φ, consider a state ϕ ∈ B∗ , b ∈ Bδ/2(b
′), and an element

h ∈ B with ‖h‖ ≤ 1. We define complex maps

Hm(z) : Bδ/2(0) ⊂ C → C

for m ≥ 0 through the equalities:

H0(z) := ϕ ◦ Φ(b+ zh); Hm(z) := 2mϕ ◦ (f2−m(b + zh)− (b+ zh)).

By (28), Hm → H0 for z ∈ Bδ/2(0), and by (29), the limit is bounded on this set.

Thus, H0 is analytic in z. By Dunford’s theorem ([Dun38]), it follows that Φ(b +
zh) is analytic in z and, therefore, Gâteaux differentiable. As this function is locally

bounded, it is analytic.

Regarding (21), observe that {ft(b)}t≥0 is compact since it is the continuous image

of [0, t]. As (a) and (b) hold on neighborhoods of every point in this set, taking a finite

cover, we have that (a) and (b) holds uniformly on a neighborhood of this set and,

after a close look at the relevant constants, (29) is also maintained on this set. Now,

fix t ≥ 0 and let ℓp/2
p → t as p ↑ ∞.

ft(b)− b = (ft(b)− ft−ℓp/2p(b)) +

ℓp∑

j=1

(fj/2p(b)− f(j−1)/2p(b))

= (ft(b)− ft−ℓp/2p(b)) +

ℓp∑

j=1

1

2p
(2p[fj/2p(b)− f(j−1)/2p(b)])

As p ↑ ∞,

ft(b)− ft−ℓp/2p(b) = fℓp/2p ◦ ft−ℓp/2p(b)− ft−ℓp/2p(b) → 0
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since (a) holds on the entire path. Moreover, the remaining summand is simply a

Riemann sum approximation of a sequence of functions converging uniformly to −Φ◦
fs(b) for s ∈ [0, t]. The following equation follows immediately:

ft(b) = b−
∫ t

0

Φ ◦ fs(b)ds.

We conclude that (21) holds, completing our proof. �

Corollary 3.4. Let A and B denote Banach algebras and Ω ⊂ ⊔∞
n=1Mn(A) a non-

commutative set. Let Ft : Ω 7→ ⊔∞
n=1Mn(B) for all t ≥ 0 and assume that they form a

composition semigroup of analytic non-commutative functions. Assume that, for each

n, the composition semigroup of vector valued analytic functions {F (n)
t }t≥0 satisfies

the hypotheses of Proposition 3.3. Then there exists an analytic, noncommutative map

Φ : Ω 7→ ⊔∞
n=1Mn(B) such that

(30)
dF

(n)
t (b)

dt
= −Φ(n)(F

(n)
t (b))

for all n ∈ N, b ∈ Ωn.

Moreover, if we strengthen these assumptions so that, for any n and b ∈ Mn(B), there

exists a δ > 0 with

(a) limt↓0 Ft − Id → 0 uniformly over Bnc
δ (b).

(b) For any T > 0, we have that ft(b) − b is uniformly bounded on Bnc
δ (b) and

t ∈ [0, T ].

then Φ is uniformly analytic.

Proof. We showed in Proposition 3.3 this map Φ exists. We must show that it is a

non-commutative function. However, this is immediate since, for b1 ∈ Mn(B) and

b2 ∈ Mp(B), we have

Φ(n+p)(b1 ⊕ b2) = lim
k↑∞

2k(F
(n+p)

2−k (b1 ⊕ b2)− b1 ⊕ b2)

= lim
k↑∞

2k([F
(n)

2−k(b1)− b1]⊕ [F
(n)

2−k(b2)− b2])

= Φ(n)(b1)⊕ Φ(p)(b2).

A similar proof shows that it also satisfies the defining invariance property so that our

first claim holds.

With respect to the uniform analyticity, we refer to the proof of Proposition 3.3. Ob-

serve that inequality (22) holds for α small enough. This α is only dependent on the

convergence of the integrand in (23). This converges to 0 uniformly on Bnc
δ (b) by

assumption (a) and the same Cauchy estimate so that the choice of α is also uniform

on this set. Moreover, the constant M in (24) is equal to 22/3M ′/α where M ′ is

the upper bound on Fs − Id for s ≤ α. Assumption (b) implies that this bound is

uniform on Bnc
δ (b). Thus, inequality (29) holds on all of this set, implying uniform

analyticity. �

Theorem 3.5. Let {Ft}t∈Q+ denote a composition semigroup of non-commutative

functions Ft : H
+(B) 7→ H+(B) such that

Documenta Mathematica 21 (2016) 841–871



854 Michael Anshelevich, John D. Williams

(i) ‖F (n)
t (b) − b‖ → 0 uniformly on M+,ǫ

n (B) for all ǫ > 0, independent of n as

t ↓ 0.

(ii) For any α, ǫ > 0 and sequence bk ∈ Γ
(n)
α,ǫ with ‖b−1

k ‖ ↓ 0, we have that

b−1
k F

(n)
t (bk) → 1n as k ↑ ∞

(iii) ℑF (n)
t (b) ≥ ℑb for all b ∈ M+

n (B) and t ≥ 0.

Then {Ft}t∈Q+ extends to a semigroup {Ft}t≥0 and the map Φ from Proposition 3.4

is an element of Λ̃.

Since, by Proposition 3.2, the conditions above are satisfied by F -transforms, this

implies that a ⊲-infinitely divisible distribution µ as in Definition 2.4 can be realized

as µ = µ1 for a monotone convolution semigroup {µt}t≥0. For such a semigroup,

Φ ∈ Λ.

Conversely, given a map Φ ∈ Λ̃ we may construct a semigroup of non-commutative

functions satisfying the hypotheses above as well as the differential equation

(31)
dFt(b)

dt
= −Φ(Ft(b))

If Φ ∈ Λ then the semigroup arises from a ⊲-infinitely divisible distribution.

We shall refer to this element Φ as the generator or the semigroup {Ft}t≥0.

Proof. First, let Φ ∈ Λ̃. We will produce the semigroup it generates by the method of

successive approximations.

Consider a sequence of non-commutative functions {fk(t, ·)}t≥0, k∈N defined as fol-

lows:

(32) f
(n)
1 (t, b) = b; f

(n)
k+1(t, b) = b−

∫ t

0

Φ(f
(n)
k (s, b))ds.

We claim that fk(t, ·) is convergent and satisfies the semigroup property with genera-

tor Φ.

Observe that since Φ is uniformly bounded by a constant M on set M
+,ǫ/2
n (B) and

fk(t, ·) maps the set M+,ǫ
n (B) to itself since

Φ : H+(B) 7→ H−(B)
we have that

(33) ℑf (n)
k (t, b) ≥ ℑ(b).

By (3), this implies that f
(n)
k (t, ·) is Lipschitz on the set Bǫ/2(b) ⊂ M

+,ǫ/2
n (B) for all

b ∈ M+,ǫ
n (B), and the Lipschitz constant L is uniform over both k, b and bounded t.

Moreover, we may extend the Lipschitz inequality

‖fk(t, b)− fk(t, b
′)‖ ≤ L‖b− b′‖

to all b, b′ ∈ M+,ǫ
n (B) by taking a path b + s(b′ − b) for s ∈ [0, 1] and using the

Lipschitz estimate on intervals of distance ǫ/2 since the distances are additive on this

path. Using this Lipschitz estimate in the integrand of (32), we conclude that

(34) ‖f (n)
2 (t, b)− f

(n)
1 (t, b)‖ = t‖Φ(b)‖ ≤ tML
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and we may conclude that

‖f (n)
3 (t, b)− f

(n)
2 (t, b)‖ =

∥
∥
∥
∥

∫ t

0

[Φ(f
(n)
2 (s, b))− Φ(f

(n)
1 (s, b))]ds

∥
∥
∥
∥

≤ L

∥
∥
∥
∥

∫ t

0

[f
(n)
2 (s, b)− f

(n)
1 (s, b)]ds

∥
∥
∥
∥

≤ L

∫ t

0

[LMs]ds ≤ t2L2M

2

Continuing inductively, we have that

(35) ‖f (n)
k+1(t, b)− f

(n)
k (t, b)‖ ≤ M(Lt)k+1

L(k + 1)!
.

For any choice of t ∈ [0, α], we have that

(36) f
(n)
N+1(t, b)− b =

N∑

k=0

(

f
(n)
k+1(t, b)− f

(n)
k (t, b)

)

is a convergent series as N ↑ ∞ and we may conclude that fN(t, ·) converges to a

function f(t, ·) uniformly on M+,ǫ
n (B), independent of n.

It is clear that f(t, ·) satisfies (31). Regarding the asymptotics, let α, ǫ > 0 and fix

a sequence bℓ ∈ Γ
(n)
α,ǫ with ‖b−1

ℓ ‖ ↓ 0. Note that b−1
ℓ f

(n)
1 (t, bℓ) ≡ 1n and satisfies

‖f (n)
1 (t, bℓ)‖−1 ↓ 0 as ‖b−1

ℓ ‖ ↓ 0. We claim b−1
ℓ f

(n)
k (t, bℓ) → 1n and satisfies

‖f (n)
k (t, bℓ)‖−1 ↓ 0 as ‖b−1

ℓ ‖ ↓ 0 for all k, uniformly over t ∈ [0, α].
Proceeding by induction, we have that for fixed k

(37) b−1
ℓ f

(n)
k+1(t, bℓ) = 1n −

∫ t

0

[b−1
ℓ f

(n)
k (s, bℓ)](f

(n)
k (s, bℓ))

−1Φ(f
(n)
k (s, bℓ))ds.

We bound the integrand by

‖[b−1
ℓ f

(n)
k (s, bℓ)]‖‖(f (n)

k (s, bℓ))
−1Φ(f

(n)
k (s, bℓ))‖

which converges to 0 uniformly over s ∈ [0, α] by induction, so that (37) converges to

1n. Moreover,

‖[f (n)
k+1(t, bℓ)]

−1‖ ≤ ‖b−1
ℓ ‖‖bℓ[f (n)

k+1(t, bℓ)]
−1‖ → 0.

Thus, each fk(t, ·) has the appropriate asymptotics and, since f(t, ·) is a uniform limit

of these functions on M+,ǫ
n , our claim holds Condition (iii) follows from (33).

In order to complete our proof, we further assume that Φ ∈ Λ and prove that the

functions f(t, ·) are in fact the F -transforms of noncommutative distributions µt ∈
Σ0. To do so we must show that the function f(t, b−1)−1 has a uniformly analytic

extension to a neighborhood of 0 for all t ≥ 0. Note that, since Φ ∈ Λ, there exists

a δ > 0 and constants M,L > 0 such that Φ(n)(b−1) extends to Bnc
δ (0) with upper

bound M and Lipschitz constant L.

Now fix α > 0. We claim that, for γ > 0 small enough we have that f
(n)
k (t, b−1)−1

extends to Bγ(0n) ⊂ Mn(B) for all n and satisfies f
(n)
k (t, b−1)−1 ∈ Bδ(0n) for all
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b ∈ Bγ(0n). Choose any t ∈ [0, α] and b ∈ Bγ(0n) where γ < δ is yet unspecified.

We have

‖f (n)
2 (t, b−1)−1 − f

(n)
1 (t, b−1)−1‖ =

∥
∥
∥
∥
∥

[(

1n −
∫ t

0

bΦ(b−1)ds

)−1

− 1n

]

b

∥
∥
∥
∥
∥

≤
∞∑

n=1

∥
∥
∥
∥

∫ t

0

bΦ(b−1)ds

∥
∥
∥
∥

n

‖b‖

≤ γ

∞∑

n=1

(γMα)n

=
γ2Mα

1− γMα

Deriving a similar inequality for general k, we have that

‖f (n)
k+1(t, b

−1)−1 − f
(n)
k (t, b−1)−1‖

=

∥
∥
∥
∥
∥

(

b−1 −
∫ t

0

Φ ◦ f (n)
k (s, b−1)ds

)−1

−
(

b−1 −
∫ t

0

Φ ◦ f (n)
k−1(s, b

−1)ds

)−1
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(

1n −
∫ t

0

bΦ(f
(n)
k (t, b−1))

)−1(

b

∫ t

0

Φ(f
(n)
k−1(t, b

−1))− Φ(f
(n)
k (t, b−1))

)

(

1n −
∫ t

0

bΦ(f
(n)
k−1(t, b

−1))

)−1

b

∥
∥
∥
∥
∥

≤
(

1

1− γMα

)2

(γ2Lα)‖f (n)
k (t, b−1)−1 − f

(n)
k−1(t, b

−1)−1‖

(38)

By induction, we have that

‖f (n)
k+1(t, b

−1)−1 − b‖ =

k∑

ℓ=1

Mγ2ℓLℓ−1αℓ

(1− γMα)2ℓ−1

This is convergent as k ↑ ∞ for γ small and converges to 0 as γ ↓ 0. Thus, for γ small

enough, we have that f
(n)
k+1(t, b

−1) ∈ Bδ(0n) for all k and n and, therefore, converges

to a limit function on Bγ(0n) (since the differences in (38) are Cauchy). This limit

function must agree with f(t, ·) by analytic continuation. This completes our proof

that f(t, ·) is an F -transform for all t.
To address the converse, consider a semigroup {Ft}t∈Q+ satisfying the (i) and (ii) in

the statement of the theorem. First note that this easily extends to an R
+ composition

semigroup. Indeed, define Ft(b) = limp/q→t Fp/q(b). To see that this is well defined,

note that, as p/q, p′/q′ → t, we have

‖F (n)
p/q (b)− F

(n)
p′/q′(b)‖ = ‖F (n)

p/q−p′/q′ ◦ F
(n)
p′/q′(b)− F

(n)
p′/q′(b)‖ → 0

uniformly on M+,ǫ
n (B) by property (i) and (iii) . It is immediate that this is a compo-

sition semigroup over R+ satisfying (i), (ii) and (iii).
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By Corollary 3.4, this semigroup may be differentiated to produce a non-commutative

function Φ . Regarding the asymptotics of Φ, consider the inequality

(39) ‖b−1Φ(n)(b)‖ ≤
∥
∥
∥
∥
∥

b−1(F
(n)
t (b)− b)

t

∥
∥
∥
∥
∥
+ ‖b−1‖

∥
∥
∥
∥
∥

(F
(n)
t (b)− b)

t
− Φ(n)(b)

∥
∥
∥
∥
∥
.

Utilizing inequality (29) in the proof of Proposition 3.3 produces

(40)

∥
∥
∥
∥
∥

(F
(n)

2N
(b)− b)

2N
− Φ(n)(b)

∥
∥
∥
∥
∥
≤ M

∞∑

k=N+1

(
1

21/3

)k

where this M = 2M ′/α . As was noted in the proof of Corollary 3.4, uniform

convergence in the sense of (i) and (ii) implies a uniform bound on M . Thus, (40)

converges to 0 uniformly on M+,ǫ
n (B) so that, for fixed t small enough, second term

on the right hand side of (39) is smaller than any δ > 0 for b ∈ M+,ǫ
n (B). Letting

bk ∈ Γ
(n)
α,ǫ satisfy ‖b−1

k ‖ ↓ 0, the first term on the right hand side of (39) converges to

0 by assumption (ii), and it follows that Φ ∈ Λ̃.

If {Ft}t≥0 arises from a ⊲-infinitely divisible measure, then it follows from Proposi-

tion 3.1 and Theorem 2.1 that b−1
k F

(n)
µt (bk) → 1n for any sequence bk ∈ Mn(B) with

‖b−1
k ‖ ↓ 0 and a similar proof allows one to conclude that Φ satisfies condition (ii) in

the definition of Λ.

It remains to show that Φ satisfies (i). However, Proposition 3.2 implies that there

exists a fixed r > 0 such that each function F
(n)
µt (b−1)− b−1 extends to Br({0}) and

converges to 0 uniformly on this set. Thus, the strengthened hypotheses in Corollary

3.3 hold so that the non-commutative function defined by the equalities

R(n)(b) = lim
t↓0

F
(n)
µt (b−1)− b−1

t

is uniformly analytic at 0 and, by continuation, is an extension of Φ(n)(b−1) for each

n. Thus, Φ ∈ Λ, completing our proof. �

The following proposition establishes continuity in generating the semigroups, and

may be useful in future applications.

Proposition 3.6. Assume that Φ1,Φ2 ∈ Λ̃ generate the semigroups of noncom-

mutative functions {F1(t, ·)}t≥0 and {F2(t, ·)}t≥0. If we assume that ‖Φ(n)
1 (b) −

Φ
(n)
2 (b)‖ < ǫ for all b ∈ Bδ(b

′) ⊂ Mn(B), a ball of radius δ where ℑ(b′) > δ1n,

then we may conclude that ‖F (n)
1 (1, b)− F

(n)
2 (1, b)‖ < Cǫ for all b ∈ Bδ(b

′) where

C depends only on Φ1.

Proof. To prove our claim, we first note that, by the vector-valued chain rule,

δ2F
(n)
i (t, b)

δt2
= δΦ(n)

(

F
(n)
i (t, b),

δ

δt
F (n)(b, t)

)

so that Fi(t, b) is twice differentiable in t and has uniformly bounded derivative for

b ∈ H+,ǫ(B) and t ∈ [0, 1]. We refer to the maximum of this bound over i = 1, 2 as

M2.
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Using the remainder estimates for the Taylor series associated to Fi, we have the

following:

(41) ‖Fi(b, t+ γ)− Fi(b, t)− γΦ(Fi(b, t))‖ ≤ M2γ
2

2

Let M1 = supb∈M+,ǫ
n (B), n∈N

‖δΦ(n)(b, ·)‖. Utilizing the estimate (41) with γ =

1/N , we produce the following inequalities:

‖F (n)
1 (b, t0 + 1/N)− F

(n)
2 (b, t0 + 1/N)‖

≤ M2

N2
+

1

N
‖Φ(n)

1 (F
(n)
1 (b, t0))− Φ

(n)
2 (F

(n)
2 (b, t0))‖

+ ‖F (n)
1 (b, t0)− F

(n)
2 (b, t0)‖

≤ M2

N2
+

1

N
‖Φ(n)

1 (F
(n)
1 (b, t0))− Φ

(n)
1 (F

(n)
2 (b, t0))‖

+
1

N
‖Φ(n)

1 (F
(n)
2 (b, t0))− Φ

(n)
2 (F

(n)
2 (b, t0))‖ + ‖F (n)

1 (b, t0)− F
(n)
2 (b, t0)‖

≤ M2

N2
+

ǫ

N
+

(

1 +
M1

N

)

‖F (n)
1 (b, t0)− F

(n)
2 (b, t0)‖

Using this estimate inductively, we have that

‖F (n)
1 (b, 1)− F

(n)
2 (b, 1)‖ ≤

(
ǫ

N
+

M2

N2

)N−1∑

k=0

(

1 +
M1

N

)k

→ eM1 − 1

M1
ǫ

where the convergence occurs as N ↑ ∞. This implies our result.

�

4. THE BERCOVICI-PATA BIJECTION.

Definition 4.1. Let (S,≺) be a poset (partially ordered set). An order on S is an

order-preserving bijection

f : (S,≺) → ({1, 2, . . . , |S|} , <) .

Denote by o(S) the number of different orders on S.

Lemma 4.2. Let (S,≺) be a poset, and S = U ⊔ V a partition of S. U and V are

posets with the induced order.

(a) Suppose that for all u ∈ U and v ∈ V , u ≺ v. Then

o(S) = o(U)o(V ).

(b) Suppose that for all u ∈ U and v ∈ V , u and v are unrelated to each other.

Then
o(S)

|S|! =
o(U)

|U |!
o(V )

|V |! .

Proof. Part (a) is obvious. It is also clear that under the assumptions of part (b), there

is a bijection between the orders on S and triples

{order on U , order on V , a subset of {1, 2, . . . , |S|} of cardinality |U |} .
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Therefore

o(S) =

(|S|
|U |

)

o(U)o(V ).

This implies part (b). �

Definition 4.3. For a non-crossing partition π = {V1, V2, . . . , Vk}, define a partial

order on it as follows: for U, V ∈ π, U ≺ V if for some i, j ∈ U and any v ∈ V , we

have i < v < j. In this case we say that U covers V . Minimal elements with respect

to this order are called the outer blocks of π; the rest are the inner blocks.

See [HS11, HS14] for more on orders on non-crossing partitions.

Definition 4.4. Let µ : B〈X〉 → B be a B-bimodule map; at this point no positivity

assumptions are made. Its monotone cumulant functional is the B-bimodule map Kµ :
B0〈X〉 → B defined implicitly by

(42) µ[b0Xb1X . . . bn−1Xbn] =
∑

π∈NC(n)

o(π)

|π|! K
µ
π [b0Xb1X . . . bn−1Xbn].

Here for a non-crossing partition π, Kµ
π is defined in terms of Kµ in the usual way

as in [Spe98] (see Section 3 of [ABFN13] for a detailed discussion), and o(π) is the

number of orders on π considered as a poset (as in the preceding definition). The

implicit definition determines the monotone cumulants uniquely since

(43)

Kµ[b0X . . . bn−1Xbn] = µ[b0X . . . bn−1Xbn]−
∑

π∈NC(n)

π 6=1̂n

o(π)

|π|! K
µ
π [b0X . . . bn−1Xbn],

and the second term on the right-hand side can be expressed in terms of lower-order

moments.

Remark 4.5. For N ∈ N, we note that

Kµ⊗1N = Kµ ⊗ 1N .

The proof of this fact is identical to that of Proposition 6.3 of [PV13].

It follows that the generating function arguments in the rest of this section work

equally well for each µ ⊗ 1N , and so the corresponding generating functions com-

pletely determine the states.

Lemma 4.6. For B-bimodule maps, µi → µ if and only if Kµi → Kµ.

Proof. By assumption, µi[b] = b = µ[b]. For n ≥ 1, clearly if

Kµi [b0Xb1X . . . bn−1Xbn] → Kµ[b0Xb1X . . . bn−1Xbn]

then

µi[b0Xb1X . . . bn−1Xbn] → µ[b0Xb1X . . . bn−1Xbn]

from equation (42). The other implication follows by induction on n, using equa-

tion (43). �
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Definition 4.7. For µ as above and η : B → B a linear map, define µ⊲η via

Kµ⊲η

[b0Xb1X . . . bn−1Xbn] = b0η (K
µ[Xb1X . . . bn−1X ]) bn.

Define the formal generating functions

Hµ(b) =
∞∑

n=0

µ[b(Xb)n]

and

Kµ(b) =
∞∑

n=1

Kµ[b(Xb)n].

Note that as formal series,

Hµ(b) = Gµ(b−1),

so our notation is consistent with the analytic function notation in the rest of the article,

except that we use superscripts for formal series. Note also that these generating

functions differ by a factor of b from the more standard ones, and are more appropriate

for the computations with monotone convolution.

Remark 4.8. Fix n ∈ N and π ∈ NC(n). Denote by V1, . . . , Vk the outer blocks of

π, by c(Vi) the partition consisting of Vi and the inner blocks it covers, and by cj(Vi),
j = 1, 2, . . . , |Vi| − 1 the partition consisting of the inner blocks lying between the

jth and the (j + 1)st elements of Vi. By Lemma 4.2 part (b),

(44)
o(π)

|π|! =

k∏

i=1

o(c(Vi))

|c(Vi)|!
.

By part (a) of that lemma,

o(c(Vi)) = o({Vi})o





|Vi|−1
⋃

j=1

cj(Vi)



 = o





|Vi|−1
⋃

j=1

cj(Vi)





and so by part (b),

(45)
o(c(Vi))

(|c(Vi)| − 1)!
=

|Vi|−1
∏

j=1

o(cj(Vi))

|cj(Vi)|!
.

The following results may be contained in [Pop08], and are closely related to Propo-

sition 3.5 in [HS14]. We provide a purely combinatorial direct proof.

Proposition 4.9. Let µ : B〈X〉 → B be an exponentially bounded B-bimodule

map. Then for each n

dH(µ⊗1N )⊲t

(b)

dt
= Kµ⊗1N (H(µ⊗1N )⊲t

(b)).
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Proof. It suffices to prove the result for N = 1. We begin by proving this equality for

each of the coefficients of the series expansions of Hµ⊲t

and Kµ ◦Hµ⊲t

. Since

d

dt
µ⊲t[b(Xb)n] =

d

dt

∑

π∈NC(n)

t|π|
o(π)

|π|! K
µ
π [bXbX . . . bXb]

=
∑

π∈NC(n)

t|π|−1 o(π)

(|π| − 1)!
Kµ

π [bXbX . . . bXb],

(46)

the coefficient of Kµ
π [b(Xb)n] in its expansion is t|π|−1 o(π)

(|π|−1)! . On the other hand,

Kµ

[

Hµ⊲t

(b)
(

XHµ⊲t

(b)
)l
]

= Kµ
[

Hµ⊲t

(b)XHµ⊲t

(b)X . . .Hµ⊲t

(b)XHµ⊲t

(b)
]

=
∑

k0,...,kl≥0

Kµ




∑

π0∈NC(k0)

t|π0|
o(π0)

|π0|!
Kµ

π0
X

∑

π1∈NC(k1)

t|π1|
o(π1)

|π1|!
Kµ

π1
X . . .X

∑

πl∈NC(kl)

t|πl|
o(πl)

|πl|!
Kµ

πl





=
∑

k0,...,kl≥0

∑

πi∈NC(ki),
0≤i≤l

o(π0)

|π0|!
o(π1)

|π1|!
. . .

o(πl)

|πl|!
Kµ

[
Kµ

π0
XKµ

π1
X . . .XKµ

πl

]
t|π0|+|π1|+...+|πl|,

where K∅(b) = b. Fixing n = k0 + . . . + kl + l, each term in this expansion is a

multiple of Kµ
π [b(Xb)n], where π is constructed from partitions π0, π1, . . . , πk and

an additional outer block of l elements:

V = {k0 + 1, k0 + k1 + 2, . . . , k0 + . . .+ kl−1 + l} ∈ π

and

πi = restriction of π to [k0 + . . .+ ki−1 + i+1, k0 + . . .+ ki+ i], i = 0, 1, . . . , l.

Note that |π0|+ |π1|+ . . .+ |πl| = |π| − 1. This identification has an inverse, which

requires first choosing one of the k outer blocks of π. Order the outer blocks left-

to-right and call the specially chosen block Vi. Using the notation from Remark 4.8,

we see that the coefficient of Kµ
π [b(Xb)n] in the expansion of Kµ(Hµ⊲t

(b)) is t|π|−1
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times

k∑

i=1

o
(
⋃

j<i c(Vj)
)

∣
∣
∣
⋃

j<i c(Vj)
∣
∣
∣!





|Vi|−1
∏

j=1

o(cj(Vi))

|cj(Vi)|!




o
(
⋃

j>i c(Vj)
)

∣
∣
∣
⋃

j>i c(Vj)
∣
∣
∣!

=

k∑

i=1

o(c(Vi))

(|c(Vi)| − 1)!

∏

j 6=i

o(c(Vj))

|c(Vj)|!

=

k∏

j=1

o(c(Vj))

|c(Vj)|!

k∑

i=1

|c(Vi)|

= |π|
k∏

j=1

o(c(Vj))

|c(Vj)|!

=
o(π)

(|π| − 1)!
.

Here we used equation (45), and equation (44) applied to partitions
⋃

j<i c(Vj) and
⋃

j>i c(Vj), in the first line, and again (44) in the last line. Since we obtained the

same coefficient as in expansion (46), the result is proved for each of the individual

components of the respective series expansions for each n ∈ N.

Extending this to the series expansions and, therefore, the functions, observe that all of

the sets over which the sums occur have cardinality whose growth rate is exponential

over n. Thus, for ‖b‖ small enough, the exponential boundedness of µ implies that

the respective series are absolutely convergent. We may therefore conclude that the t
coefficients of the series expansions agree, provided that b ∈ Bδ(0) for δ > 0 small

enough. Thus,

dHµ⊲t

(b)

dt
= Kµ(Hµ⊲t

(b)).

for b ∈ Bδ(0).
To extend to arbitrary bounded sets in B−, consider the net of difference quotients

Dµ
h(b, t) =

Hµ⊲t+h

(b)−Hµ⊲t

(b)

h

for t > 0. We have just shown that

lim
h→0

Dµ
h(b, t) → Kµ(Hµ⊲t

(b))

uniformly on Bδ(0). By Theorem 2.10 in [BPV12], this implies that the same is true

on all bounded sets in B−. Thus, at the level of functions,

dHµ⊲t

(b)

dt
= Kµ(Hµ⊲t

(b)),

proving our result. �

Corollary 4.10.

H(µ⊗1n)
⊲(s+t)

(b) = H(µ⊗1n)
⊲s
(

H(µ⊗1n)
⊲t

(b)
)

.
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In particular,

Fµ⊲(s+t)

(b) = Fµ⊲s
(

Fµ⊲t

(b)
)

,

so the combinatorial definition of monotone convolution powers coincides with the

complex analytic one in Definition 2.3.

Proof. By Proposition 4.9, Hµ⊲s
(

Hµ⊲t

(b)
)

, as a function of s, satisfies

d

ds
Hµ⊲s

(

Hµ⊲t

(b)
)

= Kµ
(

Hµ⊲s
(

Hµ⊲t

(b)
))

,

Hµ⊲s
(

Hµ⊲t

(b)
)∣
∣
∣
s=0

= Hµ⊲t

(b).

Since, by the same proposition, Hµ⊲(s+t)

(b) also satisfies this differential equation

with this initial condition, they coincide for all positive s.

For the second statement, we observe that

Gµ⊲s
(

Fµ⊲t

(b)
)

= Gµ⊲s

((

Gµ⊲t

(b)
)−1

)

= Hµ⊲s
(

Hµ⊲t

(b−1)
)

=

= Hµ⊲(s+t)

(b−1) = Gµ⊲(s+t)

(b).

�

Proposition 4.11. If µ, ν ∈ Σ0 and µ ⊲ µ = ν ⊲ ν, then µ = ν. In particular, if

the square root with respect to the monotone convolution exists, it is unique.

Proof. Under the given assumption,

Kµ =
1

2
Kµ⊲µ = Kν,

and therefore µ = ν. �

Remark 4.12. Let γ ∈ B be self-adjoint, and σ : B〈X〉 → B be a completely

positive but not necessarily a B-bimodule map. Define νγ,σ⊎ via its Boolean cumulant

functional

Bνγ,σ
⊎ [b0Xb1] = b0γb1, Bνγ,σ

⊎ [b0Xb1X . . . bn−1Xbn] = b0σ[b1X . . . bn−1]bn.

It is known [BPV12, ABFN13] that νγ,σ⊎ is a completely positive B-bimodule map.

Similarly, define νγ,σ⊲ via its monotone cumulant functional

Kνγ,σ
⊲ [b0Xb1] = b0γb1, Kνγ,σ

⊲ [b0Xb1X . . . bn−1Xbn] = b0σ[b1X . . . bn−1]bn.

We could also define νγ,σ
⊞

via its free cumulant functional

Rνγ,σ

⊞ [b0Xb1] = b0γb1, Rνγ,σ

⊞ [b0Xb1X . . . bn−1Xbn] = b0σ[b1X . . . bn−1]bn.

Lemma 4.13. Let ki → ∞ be a numerical sequence, {µi : B〈X〉 → B}∞i=1 a se-

quence of linear B-bimodule maps, and ρ : B0〈X〉 → B a linear B-bimodule map.

The following are equivalent.

(a) kiµi[P (X)] → ρ[P (X)] for all P (X) ∈ B0〈X〉.
(b) kiR

µi [P (X)] → ρ[P (X)] for all P (X) ∈ B0〈X〉.
(c) kiB

µi [P (X)] → ρ[P (X)] for all P (X) ∈ B0〈X〉.
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(d) kiK
µi [P (X)] → ρ[P (X)] for all P (X) ∈ B0〈X〉.

Here in all cases, the convergence is in norm on B.

Proof. We will prove the equivalence between (a) and (d); the rest are similar, and

were proved in [BPV12]. Indeed, on B0〈X〉,
kiµi[b0Xb1X . . . bn−1Xbn] = kiK

µi [b0Xb1X . . . bn−1Xbn]

+
∑

π∈NC(n)
|π|≥2

1

k
|π|−1
i

o(π)

|π|! (kiK
µi)π [b0Xb1X . . . bn−1Xbn].

It follows immediately that (d) implies (a). The converse implication follows by in-

duction on n. �

Corollary 4.14. For linear B-bimodule maps µi : B〈X〉 → B, the following are

equivalent.

(a)

kiµi[X ] → γ, kiµi[Xb1X . . . bn−1X ] → σ[b1X . . . bn−1].

(b)

µ⊞ki

i → νγ,σ
⊞

.

(c)

µ⊎ki

i → νγ,σ⊎ .

(d)

µ⊲ki

i → νγ,σ⊲ .

Proof. We will prove the equivalence between (a) and (d); the rest are similar, see

Lecture 13 in [NS06]. Indeed, by Lemma 4.6, the statement in part (d) is equivalent

to

kiK
µi → Kνγ,σ

⊲ ,

which by definition of νγ,σ⊲ means

kiK
µi [X ] → γ, kiK

µi [Xb1X . . . bn−1X ] → σ[b1X . . . bn−1]

This is equivalent to (a) by the preceding lemma. �

Corollary 4.15. νγ,σ⊲ is a completely positive map.

Proof. We can choose completely positive µi such that µ⊎i
i → νγ,σ⊎ , for example by

taking µi = ν
1
i
γ, 1

i
σ

⊎ . Then νγ,σ⊲ is the limit of completely positive maps µ⊲i
i , and as

such is completely positive (monotone convolution of two completely positive maps

is known to be positive, see Proposition 6.2 of [Pop08] and also [Pop12]). �

Proposition 4.16. Monotone convolution semigroups of completely positive B-

bimodule maps are in a one-to-one correspondence with pairs (γ, σ) as above.
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Proof.
{
νtγ,tσ⊲ : t ≥ 0

}
form a one-parameter monotone convolution semigroup of

completely positiveB-bimodule maps. Conversely, if {µt} is such a semigroup, define

γ =
d

dt

∣
∣
∣
∣
t=0

µt[X ] = Kµ1 [X ] ∈ Bsa,

σ[b1X . . . bn−1] =
d

dt

∣
∣
∣
∣
t=0

µt[Xb1X . . . bn−1X ] = Kµ1 [Xb1X . . . bn−1X ].

Since for Pi ∈ B〈X〉 and ci ∈ B,

N∑

i,j=1

c∗i σ[P
∗
i Pj ]cj =

d

dt

∣
∣
∣
∣
t=0

µt





N∑

i,j=1

c∗iXP ∗
i PjXcj



 =

= lim
t↓0

1

t
µt





N∑

i,j=1

c∗iXP ∗
i PjXcj



 ≥ 0,

σ is completely positive �

Remark 4.17. A short calculation shows that

Φ(b) = γ +Gσ(b).

This, combined with Theorem 2.1, gives an alternative proof of the result in Theo-

rem 3.5 that generators of semigroups arising from ⊲-infinitely divisible distributions

coincide with the set Λ. One can also use a standard combinatorial argument to show

that ⊲-infinitely divisible distributions belong to such one-parameter semigroups. At

this point, we do not know how to obtain the more general results in Theorem 3.5 by

combinatorial methods.

APPENDIX A. CHARACTERIZATION OF GENERAL CAUCHY TRANSFORMS

In this appendix, we extend the main result in [Wil13], namely the classification of

the Cauchy transforms associated to distributions µ ∈ Σ0, to the Cauchy transforms

associated to more general CP maps.

Theorem A.1. The following are equivalent:

(I) The analytic non-commutative function G = (G(n))n≥1 : H+(B) → H−(B)
has the property thatH = (H(n))n≥1 defined through the equalitiesH(n)(b) :=

G(n)(b−1) for all n ∈ N and b ∈ Mn(B) has uniformly analytic extension to a

neighborhood of 0 satisfying H(n)(0) = 0.

(II) There exists a C-linear map σ : B〈X〉 → B satisfying (1) and (2) such that

G(n)(b) = σ((b −X)−1).

Proof. We begin with (II) ⇒ (I). Let σ satisfy (1) and (2). By [PV13], Lemma 5.8,

we may conclude that there exists a ⊞-infinitely divisible distribution µ ∈ Σ0 such

that ρµ(XP (X)X) = σ(P (X)) for all P (X) ∈ B〈X〉 (here, ρµ denotes the free

cumulant function associated to µ). Thus, the Voiculescu transform of µ satisfies the

following equality:

(47) ϕ(n)
µ (b) = −σ((b−X)−1)
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for all n ∈ N and where the inverse in the equality is considered as a geometric series,

so that the right hand side is convergent for ‖b−1‖ small enough dependent on (1).

Since µ is ⊞-infinitely divisible, by Proposition 5.1 in [Wil13], we have that the left

hand side of (47) extends to

H+(B) ∪H−(B)
∞⋃

n=1

{b ∈ Mn(B) : ‖b−1‖ < C}

where C is a fixed constant, independent of n.

Now, by Proposition 1.2 in [PV13], the fact that µ ∈ Σ0 implies that µ is realized as

the distribution arising from a non-commutative probability space (A, E,B). That is,

µ(P (X)) = E(P (a))

for a fixed self-adjoint element a ∈ B and all P (X) ∈ B〈X〉. Thus, σ((b −X)−1) =
ρµ(a(b − a)−1a) and, since b − a ∈ M+

n (B) and ρµ is a CP map on B〈X〉0 we may

conclude that the σ((b −X)−1) ∈ M−
n (B) for all b ∈ M+

n (B).
Further note that

H(b) = σ((b−1 −X)−1) =

∞∑

k=0

σ((bX)kb)

is convergent in a neighborhood of zero since σ satisfies (1). It is also immediate that

H(0) = 0. This completes one direction of our proof.

We now prove (I) ⇒ (II). We will follow the proof of Theorem 4.1 in [Wil13] and

refer to this paper for the appropriate terminology.

We recover our operator σ through the differential structure of H . Indeed, we define

the map σ by letting

(σ⊗1n)(b1(X⊗1n)b2 · · · (X⊗1n)bℓ+1) := ∆ℓ+1
R H(n)( 0, . . . , 0

︸ ︷︷ ︸

ℓ+2 − times

)(b1, b2, . . . , bℓ+1)

for elements b1, b2, · · · , bℓ+1 ∈ Mn(B). It is a consequence of Proposition 3.1 in

[Wil13] and [KVV14], Theorem 3.10 that this is a well defined operator. Moreover,

the equality

∆ℓ+1
R H(n)( 0, . . . , 0

︸ ︷︷ ︸

ℓ+2 − times

)(b, b, . . . , b) =
1

(ℓ+ 1)!

dℓ+1

dtℓ+1
H(n)(0 + tb)|t=0

and the fact that the function is analytic in a neighborhood of 0 implies that

(48) H(n)(b) =

∞∑

k=0

(σ ⊗ 1n)((bX)kb)

once we show that σ satisfies (1). Continuation will allow us to conclude that

(49) G(n)(b) =

∞∑

k=0

(σ ⊗ 1n)((b
−1X)kb−1) = (σ ⊗ 1n)((b −X)−1).

Thus, our theorem will follow when we can show that σ satisfies properties (1) and

(2).
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To prove (1), we note that this is equivalent to showing that

‖σ(b1Xb2 · · ·Xbℓ+1)‖ ≤ CM ℓ+1

for a fixed C > 0, provided that ‖b1‖ = · · · = ‖bℓ+1‖ = 1. This will follow

from uniform analyticity and matches the proof of the same fact in [Wil13]. Indeed,

consider the element of Mℓ+2(B)

B =












0 b1 0 0 · · · 0
0 0 b2 0 · · · 0
0 0 0 b3 · · · 0

...
...

0 0 0 0 · · · bℓ+1

0 0 0 0 · · · 0












.

Note that H(ℓ+1) has a bound of C on a ball of radius r about 0, independent of ℓ
since we are assuming that H is uniformly analytic. Thus,

‖σ(b1Xb2 · · ·Xbℓ+1)‖ =
‖δℓ+1H(ℓ+2)(0;B)‖

(ℓ+ 1)!

= ‖∆ℓ+1
R H(ℓ+2)(0, . . . , 0)(B, . . . , B)‖

= ‖r−(ℓ+1)∆ℓ+1
R H(ℓ+2)(0, . . . , 0)(rB, . . . , rB)‖

=

(
1

r

)ℓ+1 ‖δℓ+1H(ℓ+2)(0; rB)‖
(ℓ+ 1)!

≤ C

(
1

r

)ℓ+1

where the last inequality follows from the Cauchy estimates in Theorem 2.2.

We must prove the technical fact that fact that

(50) σ|Mn(B) ≥ 0

Assume that σ(P ) < 0 for some P ∈ M+
n (B) where we can assume that P > δ1 for

some δ > 0. Note that G(n)(zP−1) ∈ M−
n (B) for all z ∈ C+ by assumption so that

λG(n)(iλP−1) ∈ M−
n (B) for all λ ∈ R+. Utilizing the series expansion in (49) as

well as the exponential bound that we have just proven, we conclude that the

lim
λ↑∞

λG(n)(iλP−1) =
σ(P )

i
= −iσ(P ) /∈ M−

n (B).

This contradiction implies (50).

It remains to show (2). Once again, this will closely follow the proof of the analogous

fact in Theorem 4.1 in [Wil13]. Indeed, we will first show that

(51) (σ ⊗ 1n)(P (X ⊗ 1n + b0)
∗P (X ⊗ 1n + b0)) ≥ 0

for any monomial P (X) = b1(X ⊗ 1n)b2 · · ·X ⊗ 1nbℓ+1 ∈ Mn(B)〈X〉 and b0 ∈
Mn(B). We also assume that |bℓ+1| > ǫ1n and the general case follows by letting

ǫ ↓ 0.
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Towards this end, we consider elements C,E0, E1 ∈ Mn(ℓ+1)(B) defined as follows:

C =












0 c1 0 0 0 · · · 0
c∗1 0 c2 0 0 · · · 0
0 c∗2 0 c3 0 · · · 0
...

...
...

0 0 · · · 0 c∗ℓ−1 0 cℓ
0 0 · · · 0 0 c∗ℓ |cℓ+1|2












;E0 = 1n ⊕ 1n ⊕ · · · ⊕ 1n
︸ ︷︷ ︸

ℓ times

⊕0n

and E1 = 1n(ℓ+1)−E0 where ci = δbi for i = 1, . . . , ℓ and cℓ+1 = bℓ+1/δ
ℓ for δ > 0

to be specified. Note that b1Xb2 · · ·Xbℓ+1 = c1Xc2 · · ·Xcℓ+1. We define a function

ĝn(ℓ+1)(b) := Gn(ℓ+1)(b− b0) : M
+
n(ℓ+1)(B) → M−

n(ℓ+1)(B)

The following properties are rather trivial and their proof matches those of Theorem

4.1 in [Wil13].

(a) C + ǫE0 > γ1n for some γ > 0 provided that δ > 0 is small enough.

(b) The n× n minor in the top left corner of

[(C + ǫE0)(X ⊗ 1n(ℓ+1) + b0 ⊗ 1ℓ+1)]
2(ℓ−1)(C + ǫE0)

is equal to P (X + b0)P
∗(X + b0) +O(ǫ).

(c) ĝ(n(ℓ+1))(b) =
∑∞

p=0 σ([b
−1(X⊗1n(ℓ+1)+ b0⊗1ℓ+1)]

pb−1) for b−1 in a neigh-

borhood of 0.

(d) We have that zĝ(n(ℓ+1))(zb) → σ(b−1) in norm as |z| ↑ ∞ for b > γ1n.

(e) ĥ(n(ℓ+1))(b) := ĝ(n(ℓ+1))(b−1) has analytic extension to a neighborhood of zero.

The only one of these properties that differs from the proof of Theorem 4.1 in [Wil13]

is (d). It follows immediately from the series expansion in (48).

We now have the pieces in place to prove (51). Note that (a) implies that C + ǫE0 is

invertible so that the map

z 7→ ĝ(n(ℓ+1))(z(C + ǫE0)
−1)

sends C+ into Mn(B)−. Let Bi,j ∈ Mn(B) for i, j = 1, . . . , ℓ + 1 and consider the

element B = (Bi,j)
ℓ+1
i,j=1 ∈ Mn(ℓ+1)(B). Given a state f ∈ Mn(B)∗ we define a new

state

f1,1(B) := f(B1,1) : Mn(ℓ+1)(B) → C.

We may define a map

Gf,C,ǫ(z) = f1,1 ◦ ĝ(n(ℓ+1))(z(C + ǫE0)
−1) : C+ → C

−.

Properties (c) and (d) imply the following for z ∈ C+:

lim
|z|↑∞

zGf,C,ǫ(z) = lim
|z|↑∞

f1,1

[

zĝ(n(ℓ+1))(z(C + ǫE0)
−1)
]

= f1,1(σ(C + ǫE0)) ≥ 0

where the last inequality will follow from the fact that f1,1 is a state, property (a) and

(50).
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Now, observe that the coefficient of z−2ℓ+1 in the function Gf,C,ǫ is equal to

ρ(t2(ℓ−1)) > 0. Furthermore, since

Gf,C,ǫ(z) = Gρ(z) =
∞∑

ℓ=0

ρ(tℓ)

zℓ+1

=

∞∑

ℓ=0

f1,1(σ([(C + ǫE0)(X ⊗ 1n(ℓ+1) + b0)]
ℓ(C + ǫE0)))

zℓ+1

we may conclude that

f1,1 ◦ σ([(C + ǫE0)(X ⊗ 1n(ℓ+1) + b0)]
2(ℓ−1)(C + ǫE0)) = ρ(t2(ℓ−1)) ≥ 0.

Recalling (b), it follows that f ◦ σ([P (X + b0)P
∗(X + b0) + O(ǫ)]) ≥ 0. Letting

ǫ ↓ 0 and noting that f was an arbitrary state, we have proven that

(σ ⊗ 1n)(P (X + b0)P
∗(X + b0)) ≥ 0

for any monomial P (X) ∈ Mn(B)〈X〉.
The extension from the case of monomials to general elements in B〈X〉 follows the

proof in [Wil13] exactly so we will refrain from repeating it. This implies (2) and,

therefore, our theorem. �
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