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874 S. Kionke, J. Raimbault

1. Introduction

Following B. Bowditch [10], we say that a group Γ is diffuse if every finite
non-empty subset A ⊂ Γ has an extremal point, that is, an element a ∈ A such
that for any g ∈ Γ \ {1} either ga or g−1a is not in A (see also 2.1 below).
A non-empty finite set without extremal points will be called a ravel1; thus a
group is diffuse if and only if it does not contain a ravel. Every non-trivial finite
subgroup of Γ is a ravel, hence a diffuse group is torsion-free. In this work, we
use geometric methods to discuss various examples of diffuse and non-diffuse
groups.
The interest in diffuse groups stems from Bowditch’s observation that they
have the unique product property (see Section 2.2 below). Originally, unique
products were introduced in the study of group rings of discrete, torsion-free
groups. More precisely, it is easily seen that if a group Γ has unique products,
then it satisfies Kaplansky’s unit conjecture. In simple terms, this means that
the units in the group ring C[Γ] are all trivial, i.e. of the form λg with λ ∈ C×

and g ∈ Γ. A similar question can be asked replacing C by some integral do-
main. A weaker conjecture (Kaplansky’s zero divisor conjecture) asserts that
C[Γ] contains no zero divisor, and a still weaker one asserts that it contains no
idempotents other than 1Γ. There are other approaches to the zero divisor and
idempotent conjecture (see for example [5], [47, Chapter 10]) which have suc-
ceeded in proving it for large classes of groups, whereas the unit conjecture has
(to the best of our knowledge) only been tackled by establishing the possibly
stronger unique product property. Consequently it is still unknown if the unit
conjecture holds, for example, for all torsion-free groups in the class of crys-
tallographic groups (see [23] for more on the subject), while the zero-divisor
conjecture is known to hold (among other) for all torsion-free groups in the
finite-by-solvable class, as proven by Kropholler, Linnell and Moody in [45].
There are further applications of the unique product property. For instance, if
Γ has unique products, then it satisfies a conjecture of Y. O. Hamidoune on
the size of isoperimetric atoms (cf. Conjecture 10 in [7]). Let us also mention
that it is known that torsion-free groups without unique products exist, see for
instance [57],[54],[61],[3],[19]. We note that for the examples in [57] (and their
generalization in [61]) it is not known if the zero-divisor conjecture holds.
Using Lazard’s theory of analytic pro-p groups, one can show that every arith-
metic group Γ has a finite index subgroup Γ′ such that the group ring Z[Γ′]
satisfies the zero divisor conjecture. This work originated from the idea to
study Kaplansky’s unit conjecture virtually. In this spirit we establish virtual
diffuseness for various classes of groups and, moreover, we discuss examples of
diffuse and non-diffuse groups in order to clarify the border between the two.
Our results are based on geometric considerations.

1.1. Results.

1We think of this as an entangled ball of string.
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1.1.1. Crystallographic groups. The torsion-free crystallographic groups, also
called Bieberbach groups, are virtually diffuse since free abelian groups are
diffuse. However, already in dimension three there is a Bieberbach group ∆P

which is not diffuse [10]. In fact, Promislow even showed that the group ∆P

does not satisfy the unique product property [54]. On the other hand, the nine
other 3-dimensional Bieberbach groups are diffuse. So is there an easy way
to decide whether a given Bieberbach group is diffuse or not? In Section 3
we discuss this question and show that in many cases it suffices to know the
holonomy group.

Theorem A. Let Γ be a Bieberbach group with holonomy group G.

(i) If G is not solvable, then Γ is not diffuse.
(ii) If G has only cyclic Sylow subgroups, then Γ is diffuse.

Note that a finite group G with cyclic Sylow subgroups is meta-cyclic, thus
solvable. We further show that in the remaining case, where G is solvable and
has a non-cyclic Sylow subgroup, the group G is indeed the holonomy of both a
diffuse and a non-diffuse Bieberbach group. Moreover, we give a complete list of
the 16 non-diffuse Bieberbach groups in dimension four. Our approach is based
on the equivalence of diffuseness and local indicability for amenable groups as
obtained by Linnell and Witte Morris [46]. We include a new geometric proof
of their result for the special case of virtually abelian groups.

1.1.2. Discrete subgroups of rank-one Lie groups. The class of hyperbolic
groups is one of the main sources of examples of diffuse groups in [10]: it
is an immediate consequence of Corollary 5.2 loc. cit. that any residually finite
word-hyperbolic group contains with finite index a diffuse subgroup (the same
statement for unique products was proven earlier by T. Delzant [24]). In partic-
ular, cocompact discrete subgroups of rank one Lie groups are virtually diffuse
(for example, given an arithmetic lattice Γ in such a Lie group, any normal
congruence subgroup of Γ of sufficiently high level is diffuse). On the other
hand, not much is known in this respect about relatively hyperbolic groups,
and it is natural to ask whether a group which is hyperbolic relative to diffuse
subgroups must itself be virtually diffuse. In this paper we answer this question
in the affirmative in the case of non-uniform lattices in rank one Lie groups.

Theorem B. If Γ is a lattice in one of the Lie groups SO(n, 1), SU(n, 1) or
Sp(n, 1) then there is a finite-index subgroup Γ′ ≤ Γ such that Γ′ is diffuse.

In the case of an arithmetic lattice, the proof actually shows that normal con-
gruence subgroups of sufficiently large level are diffuse. We left open the case
of non-uniform lattices in the exceptional rank one group F−20

4 , but it is almost
certain that our proof adapts also to this case. Theorem B is obtained as a
corollary of a result on a more general class of geometrically finite groups of
isometries. Another consequence is the following theorem.

Theorem C. Let Γ be any discrete, finitely generated subgroup of SL2(C).
There exists a finite-index subgroup Γ′ ≤ Γ such that Γ′ is diffuse.
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876 S. Kionke, J. Raimbault

The proofs of these theorems use the same approach as Bowditch’s, that is a
metric criterion (Lemma 2.1 below) for the action on the relevant hyperbolic
space. The main new point we have to establish concerns the behaviour of
unipotent isometries: the result we need (Proposition 4.2 below) is fairly easy to
observe for real hyperbolic spaces; for complex ones it follows from a theorem of
M. Phillips [53], and we show that the argument used there can be generalized
in a straightforward way to quaternionic hyperbolic spaces. We also study
axial isometries of real hyperbolic spaces in some detail, and give an optimal
criterion (Proposition 4.5) which may be of use in determining whether a given
hyperbolic manifold has a diffuse fundamental group.

1.1.3. Three–manifold groups. Following the solution of both Thurston’s Ge-
ometrization conjecture (by G. Perelman [51, 52]) and the Virtually Haken
conjecture (by I. Agol [2] building on work of D. Wise) it is known by previous
work of J. Howie [40], and S. Boyer, D. Rolfsen and B. Wiest [12] that the
fundamental group of any compact three–manifold contains a left-orderable
finite-index subgroup. Since left-orderable groups are diffuse (see Section 2.2
below) this implies the following.

Theorem D. Let M be a compact three–manifold, then there is a finite-index
subgroup of π1(M) which is diffuse.

Actually, one does not need Agol’s work to prove this weaker result: the case of
irreducible manifolds with non-trivial JSJ-decomposition is dealt with in [12,
Theorem 1.1(2)], and non-hyperbolic geometric manifolds are easily seen to be
virtually orderable. Finally, closed hyperbolic manifolds can be handled by
Bowditch’s result (see (iv) in Section 2.1 below).
We give a more direct proof of Theorem D in Section 5; the tools we use
(mainly a ‘virtual’ gluing lemma) may be of independent interest. The relation
between diffuseness (or unique products) and left-orderability is not very clear
at present; in Appendix B Nathan Dunfield gives an example of a compact
hyperbolic three-manifold whose fundamental group is not left-orderable, but
nonetheless diffuse.

Acknowledgements. We are pleased to thank to George Bergman, Andres
Navas and Markus Steenbock for valuable comments on a first version of this
paper. The second author would especially like to thank Pierre Will for di-
recting him to the article [53]. We thank the anonymous referee for comments
improving the exposition.
Both authors are grateful to the Max-Planck-Institut für Mathematik in Bonn,
where this work was initially developed, and which supported them financially
during this phase.

2. Diffuse groups

We briefly review various notions and works related to diffuseness and present
some questions and related examples of groups.
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2.1. A quick survey of Bowditch’s paper. We give here a short recapit-
ulation of some of the content in Bowditch’s paper [10]. The general notion of
a diffuse action of a group is introduced there and defined as follows: let Γ be
a group acting on a set X . Given a finite subset A ⊂ X , an element a ∈ A is
said to be an extremal point in A, if for all g ∈ Γ which do not stabilize a then
either ga or g−1a is not in A. The action of Γ on X is said to be diffuse if every
finite subset A of X with |A| ≥ 2 has at least two extremal points. An action
in which each finite subset has at least one extremal point is called weakly
diffuse by Bowditch; we will not use this notion in the sequel. It was observed
by Linnell and Witte-Morris [46, Prop.6.2.] that a free action is diffuse if and
only if it is weakly diffuse. Thus a group is diffuse (in the sense given in the
introduction) if and only if its action on itself by left-translations is diffuse.
More generally, Bowditch proves that if a group admits a diffuse action whose
stabilizers are diffuse groups, then the group itself is diffuse. In particular, an
extension of diffuse groups is diffuse as well.
The above can be used to deduce the diffuseness of many groups. For example,
strongly polycyclic groups are diffuse since they are, by definition, obtained
from the trivial group by taking successive extensions by Z. Bowditch’s paper
provides many more examples of diffuse groups:

(i) The fundamental group of a compact surface of nonpositive Euler char-
acteristic is diffuse;

(ii) More generally, any free isometric action of a group on an R-tree is diffuse;
(iii) A free product of two diffuse groups is itself diffuse;
(iv) A closed hyperbolic manifold with injectivity radius larger than log(1 +√

2) has a diffuse fundamental group.

We conclude this section with the following simple useful lemma, which appears
as Lemma 5.1 in [10].

Lemma 2.1. If Γ acts on a metric space (X, dX) satisfying the condition

(∗) ∀x, y ∈ X, g ∈ Γ : gx 6= x =⇒ max(dX(gx, y), dX(g−1x, y)) > d(x, y)

then the action is diffuse.

Proof. Let A ⊂ X be compact with at least two elements. Take a, b in A with
d(a, b) = diam(A), then these are extremal in A. It suffices to check this for a.
Given g ∈ Γ not stabilizing a, then ga or g−1a is farther away from b, hence
not in A. �

Note that this argument does not require nor that the action be isometric,
neither that the function dX on X ×X be a distance. However this geometric
statement is sufficient for all our concerns in this paper.

2.2. Related properties. Various properties of groups have been defined,
which are closely related to diffuseness. We remind the reader of some of these
properties and their mutual relations.
Let Γ be a group. We say that Γ is locally indicable, if every finitely generated
non-trivial subgroup admits a non-trivial homomorphism into the group Z. In

Documenta Mathematica 21 (2016) 873–915
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other words, every non-trivial finitely generated subgroup of Γ has a positive
first rational Betti number.
Let ≺ be a total order on Γ. The order is called left invariant, if

x ≺ y =⇒ gx ≺ gy

for all x, y and g in Γ. We say that the order ≺ on Γ is locally invariant if for
all x, g ∈ Γ with g 6= 1 either gx ≺ x or g−1x ≺ x. Not all torsion-free groups
admit orders with one of these properties. We say that Γ is left-orderable (resp.
LIO) if there exists a left-invariant (resp. locally invariant) order on Γ. It is
easily seen that an LIO group is diffuse. In fact, it was pointed out by Linnell
and Witte Morris [46] that a group is LIO if and only if it is diffuse. One can see
this as follows: If Γ is diffuse then every finite subset admits a locally invariant
order (in an appropriate sense), and this yields a locally invariant order on Γ
by a compactness argument.
The group Γ is said to have the unique product property (or to have unique
products) if for every two finite non-empty subsets A,B ⊂ Γ there is an element
in the product x ∈ A · B which can be written uniquely in the form x = ab
with a ∈ A and b ∈ B.
The following implications are well-known (for a complete account see [25]):

locally indicable
(1)
=⇒ left-orderable

(2)
=⇒ diffuse

(3)
=⇒ unique products

An example of Bergman [6] shows that (1) is in general not an equivalence, i.e.
there are left-orderable groups which are not locally indicable (further examples
are given by some of the hyperbolic three–manifolds studied in [16, Section 10]
which have a left-orderable fundamental group with finite abelianization).
An explicit example showing that (2) is not an equivalence either is explained
in the appendix written by Nathan Dunfield (see Theorem B.1). However, the
reverse implication to (3), that is the relation between unique products and
diffuseness, remains completely mysterious to us. We have no idea what the
answer to the following question should be (even by restricting to groups in
a smaller class, for example crystallographic, amenable, linear or hyperbolic
groups).

Question 1. Does there exist a group which is not diffuse but has unique
products?

It seems extremely hard to verify, for a given group, the unique product prop-
erty without using any of the other three properties.

2.3. Some particular hyperbolic three–manifolds.

2.3.1. A diffuse, non-orderable group. In Appendix B Nathan Dunfield de-
scribes explicitly an example of an arithmetic Kleinian group which is diffuse
but not left-orderable – this yields the following result (Theorem B.1).

Theorem 2.2 (Dunfield). There exists a finitely presented (hyperbolic) group
which is diffuse but not left-orderable.
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With Linnell and Witte-Morris’ result this shows that there is a difference in
these matters between amenable and hyperbolic groups. To verify that the
group is diffuse one can use Bowditch’s result or our Proposition 4.5.
Let us make a few comments on the origins of this example. The possibility
to find such a group among this class of examples was proposed, unbeknownst
to the authors, by A. Navas—see [25, 1.4.3]. Nathan Dunfield had previously
computed a vast list of examples of closed hyperbolic three–manifolds whose
fundamental group is not left-orderable (for some examples see [16]), using an
algorithm described in the second paper. The example in Appendix B was not
in this list, but was obtained by searching through the towers of finite covers
of hyperbolic 3-manifolds studied in [18, §6].

2.3.2. A non-diffuse lattice in PSL2(C). We also found an example of a com-
pact hyperbolic 3-manifold with a non-diffuse fundamental group; in fact it is
the hyperbolic three–manifold of smallest volume.

Theorem 2.3. The fundamental group of the Weeks manifold is not diffuse.

We verified this result by explicitly computing a ravel in the fundamental group
of the Weeks manifold. We describe the algorithm and its implementations in
Section A.1. In fact, given a group Γ and a finite subset A one can decide
whether A contains a ravel by the following procedure: choose a random point
a ∈ A; if it is extremal (which we check using a sub-algorithm based on the
solution to the word problem in Γ) we iterate the algorithm on A\{a}, otherwise
we continue with another one. Once all the points of A have been tested, what
remains is either empty or a ravel in Γ.

2.3.3. Arithmetic Kleinian groups. In a follow-up to this paper we will inves-
tigate the diffuseness properties of arithmetic Kleinian groups, in the hope of
finding more examples of the above phenomena. Let us mention two results
that will be proven there:

(i) Let p > 2 be a prime. There is a constant Cp such that if Γ is a
torsion-free arithmetic group with invariant trace field F of degree p
and discriminant DF > Cp, then Γ is diffuse.

(ii) If Γ is a torsion-free Kleinian group derived from a quaternion algebra
over an imaginary quadratic field F such that

DF 6= −3,−4,−7,−8,−11,−15,−20,−24

then Γ is diffuse.

2.4. Groups which are not virtually diffuse. All groups considered in
this article are residually finite and turn out to be virtually diffuse. Due to a
lack of examples, we are curious about an answer to the following question.

Question 2. Is there a finitely generated (resp. finitely presented) group which
is torsion-free, residually finite and not virtually diffuse?
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The answer is positive without the finiteness hypotheses: given any non-diffuse,
torsion-free, residually finite group Γ, then an infinite restricted direct product
of factors isomorphic to Γ is residually finite and not virtually diffuse.
Furthermore, if we do not require the group to be residually finite, then one
may take a restricted wreath product Γ ≀ U with some infinite group U . The
group Γ ≀ U is not virtually diffuse and it is finitely generated if Γ and U are
finitely generated (not finitely presented, however). Moreover, by a theorem
of Gruenberg [32] such a wreath product (Γ non-abelian, U infinite) is not
residually finite. Other examples of groups which are not virtually diffuse are
the amenable simple groups constructed by K. Juschenko and N. Monod in [42];
these groups cannot be locally indicable, however they are neither residually
finite nor finitely presented.
In the case of hyperbolic groups, this question is related to the residual prop-
erties of these groups – namely it is still not known if all hyperbolic groups
are residually finite. A hyperbolic group which is not virtually diffuse would
thus be, in light of the results of Delzant–Bowditch, not residually finite. It is
unclear to the authors if this approach is feasible; for results in this direction
see [31].
Finally, let us note that it would also be interesting to study the more restrictive
class of linear groups instead of residually finite ones.

3. Fundamental groups of infra-solvmanifolds

3.1. Introduction.

3.1.1. Infra-solvmanifolds. In this section we discuss diffuse and non-diffuse
fundamental groups of infra-solvmanifolds. The focus lies on crystallographic
groups, however we shall begin the discussion in a more general setting. Let G
be a connected, simply connected, solvable Lie group and let Aut(G) denote
the group of continuous automorphisms of G. The affine group of G is the
semidirect product Aff(G) = G ⋊ Aut(G). A lattice Γ ⊂ G is a discrete
cocompact subgroup of G. An infra-solvmanifold (of type G) is a quotient
manifold G/Λ where Λ ⊆ Aff(G) is a torsion-free subgroup of the affine group
such that Λ ∩G has finite index in Λ and is a lattice in G. If Λ is not diffuse,
we say that G/Λ is a non-diffuse infra-solvmanifold.
The compact infra-solvmanifolds which come from a nilpotent Lie group G
are characterised by the property that they are almost flat: that is, they ad-
mit Riemannian metrics with bounded diameter and arbitrarily small sectional
curvatures (this is a theorem of M. Gromov, see [30], [15]). Those that come
from abelian G are exactly those that are flat, i.e. they admit a Riemannian
metric with vanishing sectional curvatures. We will study the latter in detail
further in this section. We are not aware of any geometric characterization of
general infra-solvmanifolds.

3.1.2. Diffuse virtually polycyclic groups are strongly polycyclic. Recall that a
group Γ is (strongly) polycyclic if it admits a subnormal series with (infinite)
cyclic factors. By a result of Mostow lattices in connected solvable Lie groups
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are polycyclic (cf. Prop. 3.7 in [55]). Consequently, the fundamental group of
an infra-solvmanifold is a virtually polycyclic group.
As virtually polycyclic groups are amenable, we can use the following striking
result of Linnell and Witte Morris [46].

Theorem 3.1 (Linnell, Witte Morris). An amenable group is diffuse if and
only if it is locally indicable.

We shall give a geometric proof of this theorem for the special case of virtually
abelian groups in the next section. Here we confine ourselves to pointing out
the following algebraic consequence.

Proposition 3.2. A virtually polycyclic group Γ is diffuse if and only if
Γ is strongly polycyclic. Consequently, the fundamental group of an infra-
solvmanifold is diffuse exactly if it is strongly polycyclic.

Proof. Clearly, a strongly polycyclic group is a virtually polycyclic group, in
addition it is diffuse by Theorem 1.2 in [10].
Assume that Γ is diffuse and virtually polycyclic. We show that Γ is strongly
polycyclic by induction on the Hirsch length h(Γ). If h(Γ) = 0, then Γ is a
finite group and as such it can only be diffuse if it is trivial.
Suppose h(Γ) = n > 0 and suppose that the claim holds for all groups of
Hirsch length at most n− 1. By Theorem 3.1 the group Γ is locally indicable
and (since Γ is finitely generated) we can find a surjective homomorphism
φ : Γ → Z. Observe that h(Γ) = h(ker(φ))+ 1. The kernel ker(φ) is diffuse and
virtually polycyclic, and we deduce from the induction hypothesis, that ker(φ)
(and so Γ) is strongly polycyclic. �

In the next three sections we focus on crystallographic groups. After the discus-
sion of a geometric proof of Theorem 3.1 in the crystallographic setting (3.2),
we will analyse the influence of the structure of the holonomy group for the
existence of ravels (3.3). We also give a list of all non-diffuse crystallographic
groups in dimension up to four (3.4). Finally, we discuss a family of non-diffuse
infra-solvmanifolds in 3.5 which are not flat manifolds.

3.2. Geometric construction of ravels in virtually abelian groups.

The equivalence of local indicability and diffuseness for amenable groups which
was established by Linnell and Witte Morris [46] is a powerful result. Accord-
ingly a virtually polycyclic group with vanishing first rational Betti number
contains a ravel. However, their proof does not explain a construction of ravels
based on the vanishing Betti number. They stress that this does not seem to
be obvious even for virtually abelian groups. The purpose of this section is to
give a geometric and elementary proof of this theorem, for the special case of
virtually abelian groups, which is based on an explicit construction of ravels.

Theorem 3.3. A virtually abelian group is diffuse exactly if it is locally indi-
cable.
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As discussed in Section 2.2 local indicability implies diffuseness. It suffices to
prove the converse. Let Γ0 be a virtually abelian group and assume that it is
not locally indicable. We can find a finitely generated subgroup Γ ⊂ Γ0 with
vanishing first rational Betti number. If Γ contains torsion, it is not diffuse.
Thus we assume that Γ is torsion-free. Since a finitely generated torsion-free
virtually abelian group is crystallographic, the theorem follows from the next
lemma.

Lemma 3.4. Let Γ be a crystallographic group acting on a euclidean space E.
If b1(Γ) = 0, then for all e ∈ E and all sufficiently large r > 0 the set

B(r, e) = { γ ∈ Γ | ‖γe− e‖ ≤ r }
is a ravel.

Proof. We can assume e = 0 ∈ E. Let Γ be a non-trivial crystallographic group
with vanishing first Betti number and let π : Γ → G be the projection onto the
holonomy group at 0. The translation subgroup is denoted by T and we fix
some r0 > 0 so that for every u ∈ E there is t ∈ T satisfying ‖u− t‖ ≤ r0.
The first Betti number b1(Γ) is exactly the dimension of the space EG of G-
fixed vectors. Thus b1(Γ) = 0 means that G acts without non-trivial fixed
points on E. Since every non-zero vector is moved by G, there is a real number
δ < 1 such that for all u ∈ E there is g ∈ G such that

(1) ‖gu+ u‖ ≤ 2δ‖u‖.
For r > 0 let Br denote the closed ball of radius r around 0. Fix u ∈ Br; we
shall find γ ∈ Γ such that ‖γu‖ ≤ r and ‖γ−1u‖ ≤ r provided r is sufficiently
large. We pick g ∈ G as in (1) and we choose some γ0 ∈ Γ with π(γ0) = g.
Define w0 = γ0(0). We observe that for every two vectors v1, v2 ∈ E with
distance d, there is x ∈ w0 + T with

max
i=1,2

(‖vi − x‖) ≤ r0 +
d

2
.

Indeed, the ball of radius r0 around the midpoint of the line between v1 and
v2 contains an element x ∈ w0 + T . Apply this to the vectors v1 = u and
v2 = −gu to find some x = w0 + t. By construction we get d ≤ 2δr.
Finally we define γ = t ◦ γ0 to deduce the inequalities

‖γu‖ = ‖gu+ x‖ = ‖ − gu− x‖ ≤ r0 + δr

and
‖γ−1u‖ = ‖g−1u− g−1x‖ = ‖u− x‖ ≤ r0 + δr.

As δ < 1 the right hand side is less than r for all sufficiently large r. �

3.3. Diffuseness and the holonomy of crystallographic groups. We
take a closer look at the non-diffuse crystallographic groups and their holonomy
groups. It will turn out that for a given crystallographic group one can often
decide from the holonomy group whether or not the group is diffuse. In the
following a Bieberbach group is a non-trivial torsion-free crystallographic group.
Let Γ be a Bieberbach group, it has a finite index normal maximal abelian
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subgroup T ⊂ Γ. Recall that the finite quotientG = Γ/T is called the holonomy
group of Γ. Since every finite group is the holonomy group of some Bieberbach
group (by a result due to Auslander-Kuranishi [4]), this naturally divides the
finite groups into three classes.

Definition 1. A finite group G is holonomy diffuse if every Bieberbach group
Γ with holonomy group G is diffuse. It is holonomy anti-diffuse if every Bieber-
bach group Γ with holonomy group G is non-diffuse. Otherwise we say that G
is holonomy mixed.

For example, the finite group (Z/2Z)2 is holonomy mixed. In fact, the Promis-
low group ∆P (also known as Hantzche-Wendt group or Passman group) is a
non-diffuse [10] Bieberbach group with holonomy group (Z/2Z)2 – thus (Z/2Z)2

is not holonomy diffuse. On the other hand it is easy to construct diffuse groups
with holonomy group (Z/2Z)2 (cf. Lemma 3.9 below).
In this section we prove the following algebraic characterisation of these three
classes of finite groups.

Theorem 3.5. A finite group G is

(i) holonomy anti-diffuse if and only if it is not solvable.
(ii) holonomy diffuse exactly if every Sylow subgroup is cyclic.
(iii) holonomy mixed if and only if it is solvable and has a non-cyclic Sylow

subgroup.

The proof of this theorem will be given as a sequence of lemmata below. A
finite group G with cyclic Sylow subgroups is meta-cyclic (Thm. 9.4.3 in [34]).
In particular, such a group G is solvable and hence it suffices to prove the as-
sertions (i) and (ii). One direction of (i) is easy. By Proposition 3.2 a diffuse
Bieberbach group is solvable and thus cannot have a finite non-solvable quo-
tient, i.e. a non-solvable group is holonomy anti-diffuse. For (i) it remains to
verify that every finite solvable group is the holonomy of some diffuse Bieber-
bach group; this will be done in Lemma 3.9.
In order to prove (ii), we shall use a terminology introduced by Hiller-Sah [38].

Definition 2. A finite group G is primitive if it is the holonomy group of a
Bieberbach group with finite abelianization.

Statement (ii) of the theorem will follow from the next lemma.

Lemma 3.6. Let G be a finite group. The following statements are equivalent.

(a) G is not holonomy diffuse.
(b) G has a non-cyclic Sylow subgroup.
(c) G contains a normal primitive subgroup.

We frequently use the following notion: A cohomology class α ∈ H2(G,A) (for
some finite group G and some G-module A) is called special if it corresponds to
a torsion-free extension of G by A (cf. [38]). Equivalently, if A is free abelian,
the restriction of α to any cyclic subgroup of G is non-zero.
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Proof. Hiller-Sah [38] obtained an algebraic characterisation of primitive
groups. They showed that a finite group is primitive exactly if it does not
contain a cyclic Sylow p-subgroup which admits a normal complement (see
also [21] for a different criterion).
(a) =⇒ (b): Assume G is not holonomy diffuse and take a non-diffuse Bieber-
bach group Γ with holonomy group G. As Γ is not locally indicable we find a
non-trivial subgroup Γ0 ≤ Γ with b1(Γ0) = 0. The holonomy group G0 of Γ0 is
primitive. Let p be the smallest prime divisor of |G0|. The Sylow p-subgroups
of G0 are not cyclic, since otherwise they would admit a normal complement (by
a result of Burnside [14]). Let π : Γ → G be the projection. The image π(Γ0)
has G0 as a quotient and hence π(Γ0) also has non-cyclic Sylow p-subgroups.
As every p-group is contained in a Sylow p-subgroup, we deduce that the Sylow
p-subgroups of G are not cyclic.

(b) =⇒ (c): Let p be a prime such that the Sylow p-subgroups of G are
not cyclic. Consider the subgroup H of G generated by all p-Sylow subgroups.
The group H is normal in G and we claim that it is primitive. The Sylow
p-subgroups of H are precisely those of G and they are not cyclic. Let p′ be
a prime divisor of |H | different from p. Suppose there is a (cyclic) Sylow p′-
subgroup Q in H which admits a normal complement N . As H/N is a p′-group,
the Sylow p-subgroups of H lie in N . By construction H is generated by its
Sylow p-subgroups and so N = H . This contradicts the existence of such a
Sylow p′-subgroup.

(c) =⇒ (a): Assume now that G contains a normal subgroup N E G which is
primitive. We show that G is not holonomy diffuse. Since N is primitive, there
exists Bieberbach group Λ with holonomy group N and with b1(Λ,Q) = 0. Let
A be the translation subgroup of Λ and let α ∈ H2(N,A) be the special class
corresponding to the extension Λ. The vanishing Betti number b1(Λ,Q) = 0 is
equivalent to AN = {0}.
Consider the induced Z[G]-module B := indG

N (A). Let T be a transversal of N
in G containing 1G. If we restrict the action on B to N we obtain

B|N =
⊕

g∈T

A(g)

where A(g) is the N -module obtained from A by twisting with the action with
g, i.e. h ∈ N acts by g−1hg on A. In particular, BN = {0} and A = A(1G) is
a direct summand of B|N .

Observe that every class in H2(N,B) which projects to α ∈ H2(N,A) is spe-
cial and defines thus a Bieberbach group with finite abelianization. Shapiro’s
isomorphism sh2 : H2(G,B) → H2(N,A) is the composition of the restriction
resNG and the projectionH2(N,B) → H2(N,A). We deduce that there is a class
γ ∈ H2(G,B) which maps to some special class β ∈ H2(N,B) (which projects
onto α ∈ H2(N,A)). Let Λ′ be the Bieberbach group (with b1(Λ

′) = 0) corre-
sponding to β. The group corresponding to γ might not be torsion-free, so we
need to vary γ so that it becomes a special class.
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Let H be the collection of all cyclic prime order subgroupsC ofG which intersect
N trivially. For each C ∈ H we define

MC := indGC(Z)

where C acts trivially on Z. The group N acts freely on C\G, since C ∩N =
{1G}. Therefore (MC)|N is a free Z[N ]-module. We define the Z[G]-module

M = B ⊕
⊕

C∈H

MC .

Using Shapiro’s Lemma we find classes αC ∈ H2(G,MC) which restrict to
non-trivial classes in H2(C,MC). Consider the cohomology class δ := γ ⊕⊕

C∈H
αC ∈ H2(G,M).

The class δ is special, as can be seen as follows. For every C ∈ H this follows
from the fact that αC restricts non-trivially to C. For the cyclic subgroups
C ≤ N this holds since the restriction of γ to N is special. Consequently δ
defines a Bieberbach group Γ with holonomy group G.
Finally, we claim that resNG (δ) = i∗(res

N
G (γ)) where i : B →M is the inclusion

map. Indeed, H2(N,MC) = 0 sinceMC is a free Z[N ]-module. Since resNG (γ) =
β we conclude that Γ contains the group Λ′ as a subgroup and thus Γ is not
locally indicable. �

We are left with constructing diffuse Bieberbach groups for a given solvable
holonomy group. We start with a simple lemma concerning fibre products of
groups. For 0 ≤ i ≤ n let Γi be a group with a surjective homomorphism ψi

onto some fixed group G. The fibre product ×GΓi is defined as a subgroup of
the direct product

∏
i Γi by

×GΓi := { (γi)i ∈
n∏

i=0

Γi | ψi(γi) = ψ0(γ0) for all i }.

In this setting we observe the following

Lemma 3.7. If Γ0 is diffuse and kerψi ⊂ Γi is diffuse for all i ∈ {1, . . . , n},
then ×GΓi is diffuse.

Proof. There is a short exact sequence

1 −→
n∏

i=1

kerψi
j−→ ×GΓi −→ Γ0 −→ 1

so the claim follows from Theorem 1.2 in [10]. �

Lemma 3.8. Let G be a finite group and let M1, . . . ,Mn be free Z-modules with
G-action. Let αi ∈ H2(G,Mi) be classes. If one of these classes defines a
diffuse extension group of G, then the sum of the αi in H

2(G,M1 ⊕ · · · ⊕Mn)
defines a diffuse extension of G.

Proof. Taking the sum of classes corresponds to the formation of fibre products
of the associated extensions, so the claim follows from Lemma 3.7. �
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Lemma 3.9. Every finite solvable group is the holonomy group of a diffuse
Bieberbach group.

Proof. We begin by constructing diffuse Bieberbach groups with given abelian
holonomy group. Let A be an abelian group and let Γ1 be a Bieberbach group
with holonomy group A and projection ψ1 : Γ1 → A. Write A as a quotient
of a free abelian group Γ0 = Zk of finite rank with projection ψ0 : Z

k → A.
By Lemma 3.7 the fibred product Γ0 ×A Γ1 is a diffuse Bieberbach group with
holonomy group A (the kernel of ψ1 is free abelian).
Assume now that G is solvable. We construct a diffuse Bieberbach group Γ
with holonomy group G. We will proceed by induction on the derived length
of G. The basis for the induction is given by the construction for abelian
groups above. Let G′ be the derived group of G. By induction hypothesis
there is a faithful G′-moduleM and a “diffuse” class α ∈ H2(G′,M). Consider

the induced module B = indGG′(M). The restriction of B to G′ decomposes
into a direct sum

B|G′
∼=M ⊕X.

There is a class β ∈ H2(G,B) which maps to α under Shapiro’s isomorphism

sh2 : H2(G,B) → H2(G′,M). Due to this the restriction resG
′

G (β) decomposes

as α⊕x ∈ H2(G′,M)⊕H2(G′, X). By Lemma 3.8 the class resG
′

G (β) is diffuse.
Let Γ1 be the extension of G which corresponds to the class β. By what we
have seen, the subgroup Λ1 = ker(Γ1 → G/G′) is diffuse. Finally, we write the
finite abelian group G/G′ as a quotient of a free abelian group Γ0 = Zk. By
Lemma 3.7 the fibre product Γ0 ×G/G′ Γ1 is diffuse. In fact, it is a Bieberbach
group with holonomy group G. �

3.4. Non-diffuse Bieberbach groups in small dimensions. In this sec-
tion we briefly describe the classification of all Bieberbach groups in dimension
d ≤ 4 which are not diffuse. The complete classification of crystallographic
groups in these dimensions is given in [13] and we refer to them according to
their system of enumeration.
In dimensions 2 and 3 the classification is very easy. In dimension d = 2 there
are two Bieberbach groups and both of them are diffuse. In dimension d = 3
there are exactly 10 Bieberbach groups. The only group among those with
vanishing first rational Betti number is the Promislow (or Hantzsche-Wendt)
group ∆P (which is called 3/1/1/04 in [13]).
Now we consider the case d = 4, in this case there are 74 Bieberbach groups. As
a consequence of the considerations for dimensions 2 and 3, a Bieberbach group
Γ of dimension d = 4 is not diffuse if and only if it has vanishing Betti number
or contains the Promislow group ∆P . Vanishing Betti number is something
that can be detected easily from the classification. So how can one detect the
existence of a subgroup isomorphic to ∆P ? The answer is given in the following
lemma.
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Lemma 3.10. Let Γ be a Bieberbach group acting on E = R4 and assume that
b1(Γ) > 0. Let π : Γ → G be the projection onto the holonomy group. Then Γ
is not diffuse if and only if it contains elements g, h ∈ Γ such that

(i) S := 〈π(g), π(h)〉 ∼= (Z/2Z)2,
(ii) dimES = 1 and
(iii) if E = ES ⊕ V as S-module, then g · 0 and h · 0 lie in V .

Proof. Since b1(Γ) > 0, the group Γ is not diffuse exactly if it contains ∆P as
a subgroup.
Assume Γ contains ∆P and let Λ = ker(π) be the translation subgroup of Γ
(considered as a lattice in E). We claim that the holonomy group of ∆P embeds
into G via π. We show that L := ∆P ∩ Λ is the maximal abelian finite index
subgroup of ∆P . The lattice L spans a three-dimensional subspace V ⊆ E on
which ∆P /L ∼= π(∆P ) acts without fixed points. Since b1(Γ) > 0 the group
S = π(∆P ) has a one-dimensional fixed point space ES which is a complement
of V in E. Suppose L1 is an abelian subgroup of ∆P which contains L. Then
L1/L acts trivially on E and (as G acts faithfully on E) we conclude L1 = L.
Take g and h in Γ such π(g) and π(h) generate S, clearly g · 0, h · 0 ∈ V .
The group S acts without non-trivial fixed points on V and E = ES ⊕ V is a
decomposition as S-module.
Conversely, if we can find g, h ∈ Γ as above, then they generate a Bieberbach
group of smaller dimension and with vanishing first Betti number. Hence they
generate a group isomorphic to ∆P . �

Using this lemma and the results of the previous section one can decide for
each of the 74 Bieberbach groups whether they are diffuse or not. It turns out
there are 16 non-diffuse groups in dimension 4, namely (cf. [13]):

04/03/01/006, 05/01/02/009, 05/01/04/006, 05/01/07/004,
06/01/01/049, 06/01/01/092, 06/02/01/027, 06/02/01/050,
12/03/04/006, 12/03/10/005, 12/04/03/011, 13/04/01/023,
13/04/04/011, 24/01/02/004, 24/01/04/004, 25/01/01/010.

The elementary abelian groups (Z/2Z)2, (Z/2Z)3, the dihedral group D8, the
alternating groupA4 and the direct product groupA4×Z/2Z occur as holonomy
groups. Among these groups only four groups have vanishing first Betti num-
ber (these are 04/03/01/006, 06/02/01/027, 06/02/01/050 and 12/04/03/011).
However, one can check that these groups contain the Promislow group as well.
In a sense the Promislow group is the only reason for Bieberbach groups in di-
mension 4 to be non-diffuse (thus non of these groups has the unique product
property). This leads to the following question: What is the smallest dimen-
sion d0 of a non-diffuse Bieberbach group which does not contain ∆P ? Clearly,
such a group has vanishing first Betti number. Note that there is a group
with vanishing first Betti number and holonomy (Z/3Z)2 in dimension 8 (see
[38]); thus 5 ≤ d0 ≤ 8. The so-called generalized Hantzsche-Wendt groups are
higher dimensional analogs of ∆P (cf. [63, 58]). However, any such group Γ
with b1(Γ) = 0 contains the Promislow group (see Prop. 8.2 in [58]).
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3.5. A family of non-diffuse infra-solvmanifolds. Many geometric
questions are not answered by the simple algebraic observation in Proposi-
tion 3.2. For instance, given a simply connected solvable Lie group G, is there
an infra-solvmanifold of type G with non-diffuse fundamental group? To our
knowledge there is no criterion which decides whether a solvable Lie group G
admits a lattice at all. Hence we do not expect a simple answer for the above
question. We briefly discuss an infinite family of simply connected solvable
groups where every infra-solvmanifold is commensurable to a non-diffuse one.
Let ρ1, . . . , ρn be n ≥ 1 distinct real numbers with ρi > 1 for all i = 1, . . . , n.
We define the Lie group

G := R2n ⋊R

where s ∈ R acts by the diagonal matrix β(s) := diag(ρs1, . . . , ρ
s
n, ρ

−s
1 , . . . , ρ−s

n )
on R2n. The group G is a simply connected solvable Lie group. The isomor-
phism class of G depends only one the line spanned by (log ρ1, . . . , log ρn) in
Rn. For n = 1 the group G is the three dimensional solvable group Sol, which
will be reconsidered in Section 5.

Proposition 3.11. In the above setting the following holds.

(a) The Lie group G has a lattice if and only if there is t0 > 0 such that
the polynomial f(X) :=

∏n
i=1(1 − (ρt0i + ρ−t0

i )X + X2) has integral
coefficients.

(b) If G admits a lattice, then every infra-solvmanifold of type G is com-
mensurable to a non-diffuse one.

Before we prove the proposition, we describe the group of automorphisms of G.
Let σ ∈ Aut(G), then σ(x, t) = (Wx+f(t), λt) for some λ ∈ R×,W ∈ GL2n(R)
and f ∈ Z1(R,R2n) a smooth cocycle for the action of s ∈ R on R2n via β(λ·s).
Using thatH1(R,R2n) = 0 we can compose σ with an inner automorphism of G
(given by an element in [G,G]) such that f(t) = 0. Observe that the following
equality has to hold

β(λt)W =Wβ(t)

for all t ∈ R. As a consequence λ is 1 or −1. In the former case W is diagonal,
in the latter case W is a product of a diagonal matrix and

W0 =

(
0 1n
1n 0

)
.

Let D+ denote the group generated by diagonal matrices in GL2n(R) and W0,
then Aut(G) ∼= R2n ⋊D+.

Proof of Proposition 3.11. Ad (a): Note that N := R2n = [G,G] is the max-
imal connected normal nilpotent subgroup of G. Suppose that G contains a
lattice Γ. Then Γ0 := Γ ∩N is a lattice in N (cf. Cor. 3.5 in [55]) and Γ/Γ0 is
a lattice in G/N ∼= R. Let t0 ∈ R so that we can identify Γ/Γ0 with Zt0 in R.
Take a basis of Γ0, with respect to this basis β(t0) is a matrix in SL2n(Z). The
polynomial f is the charcteristic polynomial of β(t0) and the claim follows.
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Conversely, let t0 > 0 with f ∈ Z[X ] as above. Take any matrix A ∈ SL2n(Z)
with characteristic polynomial f , e.g. if f(X) = X2n + a2n−1X

2n−1 + · · · +
a1X + a0 then the matrix A with ones above the diagonal and last row
(−a0,−a1, . . . ,−a2n−1) has suitable characteristic polynomial.
Since by assumption all the ρi are distinct and real, we find P ∈ GL2n(R) with
PAP−1 = β(t0). Now define Γ0 := PZ2n and we obtain a lattice Γ := Γ0⋊(Zt0)
in G.

Ad (b): Let Λ ⊂ Aff(G) be the fundamental group of an infra-solvmanifold.
Define Γ := G ∩ Λ and Γ0 := Γ ∩ N where N = R2n is the maximal normal
nilpotent subgroup. The first Betti number of Λ is b1(Λ) = dimR(G/N)Λ/Γ.
The quotient Γ/Γ0 is a lattice in R, so is of the form Zt0 for some t0 > 0.
Take any basis of the lattice Γ0 ⊆ R2n. We shall consider coordinates on
R2n with respect to this basis from now on. In particular, β(t0) is given by
an integral matrix A ∈ SL2n(Z) and further Γ is isomorphic to the strongly
polycyclic group Z2n ⋊ Z where Z acts via A. Let F/Q be a finite totally
real Galois extension which splits the characteristic polynomial of A, so the
Galois group permutes the eigenvalues of A. Moreover, the Galois group acts on
Γ0⊗ZF so that we can find a set of eigenvectors which are permuted accordingly.
Let B ∈ GL2n(F ) be the matrix whose columns are the chosen eigenvectors,
then B−1AB = β(t0) and for all σ ∈ Gal(F/Q) we have σ(B) = BPσ for a
permutation matrix Pσ ∈ GL2n(Z). It is easily seen that Pσ commutes with
W0, and hence W = BW0B

−1 is stable under the Galois group, this means
W ∈ GL2n(Q).
Since W is of order two, we can find a sublattice L ⊂ Γ0 which admits a basis
of eigenvectors of W . Pick one of these basis vectors, say v, with eigenvalue
one, find q ∈ Z \ {0} with qΓ0 ⊂ L and take a positive integer r so that

Ar ≡ 1 mod 4q.

This way we find a finite index subgroup Γ′ := L ⋊ rZ of Γ which is stable
under the automorphism τ defined by (x, t) 7→ (Wx,−t). Since we want to
construct a torsion-free group we cannot add τ into the group. Instead we
take the group Λ′ generated by (12v, 0)τ and Γ′ in the affine group Aff(G). A
short calculation shows that Λ′ is torsion-free and hence Λ′ is the fundamental
group of an infra-solvmanifold of type G which is commensurable with Λ. By
construction the first Betti number b1(Λ

′) = dimR(G/N)Λ
′/Γ′

vanishes and so
Λ′ is not diffuse by Theorem 3.1. �

4. Fundamental groups of hyperbolic manifolds

In this section we prove Theorems B and C from the introduction. We give a
short overview of rank one symmetric spaces before studying first their unipo-
tent and then their axial isometries in view of applying Lemma 2.1. Then we
review some well-known properties of geometrically finite groups of isometries
before proving a more general result (Theorem 4.8) and showing how it implies
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Theorems B and C. We also study the action on the boundary, resulting in
Theorem 4.11, which will be used in the next section.

4.1. Hyperbolic spaces.

4.1.1. Isometries. We recall some terminology about isometries of Hadamard
manifolds: if g ∈ Isom+(X) where X is a complete simply connected manifold
with non-positive curvature then g is said to be

• Hyperbolic (or axial) if min(g) = infx∈X dX(x, gx) > 0;
• Parabolic if it fixes exactly one point in the visual boundary ∂X , equiv-
alently min(g) = 0 and g has no fixed point inside X .

We will be interested here in the case where X = G/K is a symmetric space
associated to a simple Lie group G of real rank one. An element g ∈ G then
acts on X as an hyperbolic isometry if and only if it is semisimple and has
an eigenvalue of absolute value > 1 in the adjoint representation. Parabolic
isometries of X are algebraically characterised as corresponding to the non-
semisimple elements of G; their eigenvalues are necessarily of absolute value
one. If they are all equal to one then the element of G is said to be unipotent,
as well as the corresponding isometry of X .

4.1.2. Projective model. Here we describe models for the hyperbolic spaces
Hn

A for A = R,C,H (the symmetric spaces associated to the Lie groups
SO(n, 1), SU(n, 1) and Sp(n, 1) respectively) which we will use later for com-
putations. We will denote by z 7→ z the involution on A fixing R, and define
as usual the reduced norm and trace of A by

|z|A/R = zz = zz, trA/R(z) = z + z

We let V = An,1, by which we mean that V is the right A-vector space An+1

endowed with the sesquilinear inner product given by2

〈v, v′〉 = v′n+1v1 +

n∑

i=2

v′ivi + v′1vn+1.

The (special if A = R or C) isometry group G of V is then isomorphic to
SO(n, 1), SU(n, 1) or Sp(n, 1). Let:

V− = {v ∈ V | 〈v, v〉 < 0} =

{
v ∈ V | trA/R(v1vn+1) < −

n∑

i=2

|vi|A/R

}

then the image X = PV− of V− in the A-projective space PV of V can be
endowed with a distance function dX given by:

(2) cosh

(
dX([v], [v′])

2

)2

=
|〈v, v′〉|A/R

〈v, v〉〈v′, v′〉 .

This distance is G-invariant, and the stabilizer in G of a point in V− is a max-
imal compact subgroup of G. Hence the space X is a model for the symmetric

2We use the model of [43] rather than that of [53].

Documenta Mathematica 21 (2016) 873–915



On Geometric Aspects of Diffuse Groups 891

space G/K (where K = SO(n), SU(n) or Sp(n) according to whether A = R,C
or H).
The following lemma will be of use later.

Lemma 4.1. If v, v′ ∈ V− then trA/R(vn+1v
′
n+1〈v, v′〉) < 0.

Proof. Since trA/R(vn+1v
′
n+1〈v, v′〉) does not change sign when we multiply v

or v′ by a element of A from the right, we may suppose that vn+1 = v′n+1 = 1.
In this case we have:

trA/R(vn+1v
′
n+1〈v, v′〉) = trA/R(v1) + trA/R(v

′
1) + trA/R

(
n∑

i=2

v′ivi

)
.

Now we have

trA/R

(
n∑

i=2

v′ivi

)
≤ 2

√√√√
(

n∑

i=2

|vi|A/R

)
·
(

n∑

i=2

|v′i|A/R

)

by Cauchy-Schwarz, and since v, v′ ∈ V− we get

trA/R(vn+1v
′
n+1〈v, v′〉) < trA/R

(
n∑

i=2

v′ivi

)
−

n∑

i=2

|vi|A/R −
n∑

i=2

|v′i|A/R

≤ −



√√√√

n∑

i=2

|vi|A/R −

√√√√
n∑

i=2

|v′i|A/R




2

≤ 0.

�

4.2. Unipotent isometries and distance functions. In this subsection
we prove the following proposition, which is the main ingredient we use in
extending the results of [10] from cocompact subgroups to general lattices.

Proposition 4.2. Let A be one of R,C or H and let η 6= 1 be a unipotent
isometry of X = Hn

A and a, x ∈ Hn
A. Then

max
(
d(a, ηx), d(a, η−1x)

)
> d(a, x).

Proof. We say that a function h : Z → R is strictly convex if h is the restriction
to Z of a strictly convex function on R (equivalently all points on the graph of
h are extremal in their convex hull and h has a finite lower bound). We will
use the following criterion, similar to Lemma 6.1 in [53].

Lemma 4.3. Let X be a metric space, x ∈ X and let φ ∈ Isom(X). Suppose
that there exists an increasing function f : [0,+∞[→ R such that for any y ∈ X
the function hy : k 7→ f(dX(y, φkx)) is strictly convex. Let

Bk = {y ∈ X : dX(y, φkx) ≤ dX(y, x)}.
Then we have B1 ∩B−1 = ∅.
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Proof. Suppose there is a y ∈ X such that

dX(y, φx), dX(y, φ−1x) ≤ dX(y, x).

Since f is increasing this means that hy(1), hy(−1) ≤ hy(0): but this is impos-
sible since hy is strictly convex. �

Applying it to φ = η, we see that it suffices to prove that for any z, w ∈ X the
function

f : t ∈ R 7→ cosh

(
dX(z, ηtw)

2

)2

is strictly convex on R, i.e. f ′′ > 0. Of course we need only to prove that
f ′′(0) > 0 since z, w are arbitrary. By the formula (2) for arc length in hyper-
bolic spaces it suffices to prove this for the function

h : t 7→ |〈v, ηtv′〉|A/R

for any two v, v′ ∈ An,1 (which we normalize so that their last coordinate
equals 1). Now we have:

d2h

dt2
=

d

dt

(
trA/R

(
〈v, ηtv′〉 d

dt
〈v, ηtv′〉

))

= 2

∣∣∣∣
d

dt
〈v, ηtv′〉

∣∣∣∣
A/R

+ trA/R

(
〈v, ηtv′〉 d

2

dt2
〈v, ηtv′〉

)
.

There are two distinct cases (see either [53, Section 3] or [43, Section 1]): η can
be conjugated to a matrix of one of the following forms:


1 −a −|a|A/R/2
0 1n−1 a
0 0 1


 , a ∈ An or



1 0 b
0 1n−1 0
0 0 1


 , b ∈ A totally imaginary.

In the second case we get that d2

dt2 η
t = 0, hence

d2h

dt2
= 2

∣∣∣∣
d

dt
〈v, ηtv′〉

∣∣∣∣
A/R

= 2|b|A/R > 0.

In the first case (which we normalize so that |a|A/R = 1) we have at t = 0:

d2h

dt2
= 2

∣∣∣∣
d

dt
〈v, ηtv′〉

∣∣∣∣
A/R

− trA/R

(
vn+1v

′
n+1〈v, v′〉

)

and hence the result follows from Lemma 4.1. �

4.3. Hyperbolic isometries and distance functions. In view of estab-
lishing the inequality (∗) in Lemma 2.1 axial isometries in negatively curved
spaces have a much simpler behaviour than parabolic ones: one only needs to
use the hyperbolicity of the space on which they act as soon as their minimal
displacement is large enough, as was already observed in [10] (see Lemma 4.4
below). On the other hand, isometries with small enough minimal displace-
ment which rotate non-trivially around their axis obviously do not satisfy (∗)

Documenta Mathematica 21 (2016) 873–915



On Geometric Aspects of Diffuse Groups 893

for all y; we study this phenomenon in more detail for real hyperbolic spaces
below, obtaining an optimal criterion in Proposition 4.5.

4.3.1. Gromov-hyperbolic spaces. The following lemma is a slightly more pre-
cise version of Corollary 5.2 [10]. It has essentially the same proof; we will give
the details, which are not contained in [10].

Lemma 4.4. Let δ > 0 and d > 0; there exists a constant C(δ, d) such that for
any δ-hyperbolic space X and any axial isometry γ of X such that min(γ) ≥
C(δ, d) and any pair (x, a) ∈ X we have

max(d(γx, a), d(γ−1x, a)) ≥ d(x, a) + d.

Proof. Let γ be as in the statement (with the constant C = C(δ, d) to be deter-
mined later), let L be its axis. Let w,w′, w′′ be the projections of x, γx, γ−1x
on L, and v that of a. We will suppose (without loss of generality) that v lies
on the ray in L originating at w and passing through w′.
Now let T be a metric tree with set of vertices constructed as follows: we take
the geodesic segment on L containing all of w,w′, w′′ and v and we add the
arcs [x,w], etc. Then, for any two vertices u, u′ of T we have

dX(u, u′) ≤ dT (u, u
′) ≤ dX(u, u′) + c

where c depends only on δ (see the proof of Proposition 6.7 in [11]). In this
tree we have

dT (a, γ
−1x) = dX(a, v) + dX(v, w) + dX(w,w′′) + dX(w′′, γ−1x)

= dX(w, γ−1w) + dX(a, v) + dX(v, w) + dX(w, x)

= min(γ) + dT (a, x)

and using both inequalities above we get that

dX(a, γ−1x) ≥ dT (a, γ
−1x)− c ≥ dX(a, x) + min(γ)− c.

We see that for min(γ) ≥ C(δ, d) = c+ d the desired result follows. �

4.3.2. A more precise result in real hyperbolic spaces. We briefly discuss a quan-
titative version of Lemma 4.4. Bowditch observed (cf. Thm. 5.3 in [10]) that a
group Γ which acts freely by axial transformations on the hyperbolic space Hn

R

is diffuse if every γ ∈ Γ \ {1} has translation length at least 2 log(1 +
√
2). We

obtain a slight improvement relating the lower bound on the translation length
more closely to the eigenvalues of the rotational part of the transformation.
Our proof is based on a calculation in the upper half-space model of Hn

R
, i.e.

we consider Hn
R
= { x ∈ Rn | xn > 0 } with the hyperbolic metric d (see §4.6 in

[56]). Every axial transformation γ on Hn
R
is conjugate to a transformation of

the form x 7→ kAx where A is an orthogonal matrix in O(n− 1) (acting on the
first n − 1 components) and k > 1 is a real number (see Thm. 4.7.4 in [56]).
We say that A is the rotational part of γ. The translation length of γ is given
by min(γ) = log(k). We define the absolute rotation rγ of γ to be the maximal
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value of |λ − 1| where λ runs through all eigenvalues of A. In other words,
rγ is merely the operator norm of the matrix A − 1. The absolute rotation
measures how close the eigenvalues get to −1. It is apparent from Bowditch’s
proof that the case of eigenvalue −1 (rotation of angle π) is the problematic
case whereas the situation should improve significantly for rotation bounded
away from angle π. We prove the following sharp result.

Proposition 4.5. An axial transformation γ of Hn
R
has the property

(⋆) max(d(x, γy), d(x, γ−1y)) > d(x, y) for all x, y ∈ Hn
R

if and only if the translation length min(γ) satisfies

(♣) min(γ) ≥ arcosh(1 + rγ).

Using the same argument as above we immediately obtain the following im-
provement of Bowditch’s Theorem 5.3 (we use Proposition 4.2 to take care of
the unipotent elements).

Corollary. Let Γ be a group which acts freely by axial or unipotent trans-
formations of the hyperbolic space Hn

R
. If the translation length of every axial

γ ∈ Γ satisfies inequality (♣), then Γ is diffuse.

Remark. (1) It is a trivial matter to see that the converse of the corollary does
not hold. Take any axial transformation γ 6= 1 which does not obey inequality
(♣), then the diffuse group Γ = Z acts via γ on Hn.
(2) If γ ∈ SL2(C) is hyperbolic, with an eigenvalue λ = eℓ/2eiθ/2 then the
condition (♣) is equivalent to

cosh(ℓ) ≥ 1 +
√
2− 2 cos(θ).

Proof of Proposition 4.5. Let γ be an axial transformation which satisfies (♣).
We will show that for all x, y ∈ Hn

R
we have max(d(x, γy), d(x, γ−1y)) > d(x, y).

After conjugation we can assume that γ(a) = Aka with k > 1 and A ∈ O(n−1).
We take x, y to lie in the upper half-space model, then we may consider them as
elements of Rn. We will suppose in the sequel that ‖x‖ ≤ ‖y‖ in the euclidean
metric of Rn, and under this hypothesis we shall prove that d(x, γy) > d(x, y).
If the opposite inequality ‖x‖ ≥ ‖y‖ holds we get that d(y, γx) > d(x, y), hence
d(x, γ−1y) > d(x, y) which implies the proposition.
Using the definition of the hyperbolic metric and the monotonicity of cosh on
positive numbers, it suffices to show

‖x−Aky‖2 > k‖x− y‖2.
In other words, we need to show that the largest real zero of the quadratic
function

f(t) = t2‖y‖2 − t(‖x‖2 + ‖y‖2 + 2〈x,Ay − y〉) + ‖x‖2

is smaller than exp(arcosh(1 + rγ)) = 1 + rγ +
√
r2γ + 2rγ . We may divide by

‖y‖2 and we can thus assume ‖y‖ = 1 and 0 < ‖x‖ ≤ 1. The large root of f(t)
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is

t0 =
‖x‖2 + 1

2
+ 〈x,Ay − y〉+ 1

2

√
(‖x‖2 + 1 + 2〈x,Ay − y〉)2 − 4‖x‖2.

Note that if rγ = 0, then k > 1 = t0.
Suppose that rγ > 0. Indeed, by Cauchy-Schwarz |〈x,Ay − y〉| < rγ‖x‖ and
the inequality is strict since xn > 0. As a consequence t0 < t(‖x‖) where

t(s) =
s2 + 1

2
+ rγs+

1

2

√
(s2 + 1 + 2rγs)2 − 4s2.

Finally, we determine the maximum of the function t(s) for s ∈ [0, 1]. A simple
calculation shows that there is no local maximum in the interval [0, 1]. We
conclude that the maximal value is attained at s = 1 and is precisely

t(1) = 1 + rγ +
√
r2γ + 2rγ .

Conversely, assume that (♣) does not hold. In this case we have 1 < k <

1 + rγ +
√
r2γ + 2rγ and thus rγ 6= 0. Choose some vector y ∈ Rn with yn = 0

and ‖y‖ = 1 so that ‖Ay − y‖ = rγ (this is possible since rγ is the operator
norm of A − 1). We define x = r−1

γ (Ay − y) and we observe that x 6= y since
the orthogonal matrix A has no eigenvalues of absolute value exceeding one.
The following inequalities hold:

‖x− k−1A−1y‖2
k−1

≤ ‖x− kAy‖2
k

< ‖x− y‖2.

The first follows from 〈x,A−1y〉 ≤ 〈x, y〉+ rγ = 〈x,Ay〉. The second inequality

follows from the assumption k < 1 + rγ +
√
r2γ + 2rγ . Since the last inequality

is strict, we can use continuity to find distinct x′ and y′ in the upper half-space
(close to x and y), so that still

max

{‖x′ − k−1A−1y′‖2
k−1

,
‖x′ − kAy′‖2

k

}
< ‖x′ − y′‖2.

Interpreting x′ and y′ as points in the hyperbolic space, the assertion follows
from the definition of the hyperbolic metric. �

4.4. Geometric finiteness. There are numerous equivalent definitions of
geometric finiteness for discrete subgroups of isometries of rank one spaces, see
for example [49, Section 3.1] or [56, Section 12.4] for real hyperbolic spaces.
We shall use the equivalent definitions given by B. Bowditch in [9] for general
negatively-curved manifolds.
The only facts from the theory of geometrically finite groups we will need in this
section are the following two lemmas which are quite immediate consequences
of the equivalent definitions.
In the rest of this section we will always use the following notation: whenever
P is a parabolic subgroup in a rank-one Lie group and we write

P =MAN
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this means that A is a split torus,M is compact and N is the unipotent radical
of P (such a decomposition is essentially—up to conjugation of A and M by
an element of N—unique).

Lemma 4.6. Let G be a rank-one Lie group and Γ ≤ G be a geometrically finite
subgroup, all of whose parabolic elements have finite-order eigenvalues. Then
there is a subgroup Γ′ ≤ Γ of finite index such that all parabolic isometries
contained in Γ′ are unipotent elements of G.

Proof. From [9, Corollary 6.5] we know that Γ has only finitely many conju-
gacy classes of maximal parabolic subgroups; by residual finiteness of Γ we
will be finished if we can show that for any parabolic subgroup P of G such
that the fixed point of P in ∂Hn

R
is a cusp point, the group Λ = Γ ∩ P is

virtually unipotent. Writing P = MAN we see that it suffices to verify that
the projection of Λ on A is trivial (Indeed, since then Λ is contained in MN ,
and its projection to M is finite because it has only finite-order elements by
the hypothesis on eigenvalues, and it is finitely generated by [9, Proposition
4.1]). This follows from discreteness of Γ: if it contained an element λ with a
non-trivial projection on A, then for any non-trivial n ∈ N we have that either
λknλ−k or λ−knλk goes to the identity of G; but since the fixed point of P is a
cusp point for Γ the intersection Γ∩N must be nontrivial, hence there cannot
exist such a λ. �

Lemma 4.7. Let G be a rank-one Lie group, Γ a torsion-free geometrically finite
subgroup of G and MΓ = Γ\X. Then for any ℓ0 there are only finitely many
closed geodesics of length less than ℓ0 in MΓ.

Proof. See also [56, Theorem 12.7.8]. One of Bowditch’s characterizations of
geometrical finiteness is the following: let LΓ ⊂ ∂X be the limit set of Γ, i.e.
the closure of the set of points fixed by some nontrivial element of Γ, and let
YΓ ⊂ X be the convex hull in X of LΓ. Let CΓ = Γ\YΓ (the ‘convex core’ of
MΓ), and let M[ε,+∞[ be the ε-thick part of MΓ. Then Γ is geometrically finite
if and only if CΓ ∩M[ε,+∞[ is compact (for some or any ε): see [9, Section 5.3].
It is a well-known consequence of Margulis’ lemma that there is an ε0 > 0 such
that all geodesics in MΓ of length less than ℓ0 are contained in the ε0-thick
part. On the other hand it is clear that any closed geodesic of MΓ is contained
in CΓ (since the endpoints of any lift are in LΓ) and hence all closed geodesics
of MΓ with length ≤ ℓ0 are contained in the compact set CΓ ∩M[ε0,+∞[, which
implies that there are only finitely many such. �

4.5. Main results.

4.5.1. Action on the space.

Theorem 4.8. Let G be one of the Lie groups SO(n, 1), SU(n, 1) or Sp(n, 1),
X the associated symmetric space and let Γ be a geometrically finite subgroup
of G. Suppose that all eigenvalues of parabolic elements of Γ are roots of unity.
Then there exists a finite-index subgroup Γ′ ⊂ Γ such that Γ′ acts diffusely
on X.
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Proof. Let Γ′ be a finite-index subgroup of Γ such that all semisimple elements
γ ∈ Γ′ have min(γ) > C(δX , 1) (where δX is a hyperbolicity constant for X ,
which is Gromov-hyperbolic since it is a negatively-curved, simply connected
Riemannian manifold, and C(δX , 1) is the constant from Lemma 4.4)—such
a subgroup exists by Lemma 4.7 and the residual finiteness of Γ. By Lemma
4.6 we may also suppose that the parabolic isometries in Γ′ are exclusively
unipotent.
Now we can check that the hypothesis (∗) in Lemma 2.1 holds for the action
of Γ on X : for axial isometries we only have to apply Lemma 4.4, and for
unipotent elements Proposition 4.2. �

The hypothesis on eigenvalues of parabolic elements is equivalent to asking that
every parabolic subgroup of Γ contains a finite-index subgroup which consists
of unipotent elements. It is necessary for an application of Lemma 2.1, as
shown by the following construction.

Lemma 4.9. For n ≥ 4 there exists a discrete, two-generated free subgroup Γ
of SO(n, 1) such that for all x ∈ Hn

R
there is a y ∈ Hn

R
and a g ∈ Γ \ {1} such

that

d(x, y) ≥ d(gx, y), d(g−1x, y).

Proof. It suffices to prove this lemma for SO(4, 1). Let ω be an infinite-order
rotation of R2 and let φ be the isometry of R3 = R × R2 given by (t, x) 7→
(t + 1, ω · x). Then it is easy to see that for any k and any x not on the

axis R × 0 of φ the bisectors between x and φ±kx intersect. Let φ̃ be the
isometry of H4

R
obtained by taking the Poincaré extension of φ (i.e. we fix a

point on ∂H4
R
and define φ̃ by identifying the horospheres at this point with

the Euclidean three–space on which φ acts), which will also not satisfy (∗) for
all points outside of a two dimensional totally geodesic submanifold Yφ.
Now take φ1, φ2 as above. There exists a g ∈ Isom(H4

R
) such that gYφ2

g−1 ∩
Yφ2

= ∅, and then for any k1, k2 > 0 the group 〈φ̃k1

1 , φ̃
k2

2 〉 satisfies the second
conclusion of the lemma. It remains to prove that for k1, k2 large enough
it is a discrete (and free) group. This is done by a very standard argument

which goes as follows: There are disjoint open neighbourhoods Ui of Fix(φ̃i)

in ∂H4
R
(not containing Fix(φ̃j), j 6= i) and positive integers k1, k2 such that

for all k ∈ Z, |k| ≥ ki we have φ̃ki (H
4
R
\ Ui) ⊂ Ui. Now we can apply the ping-

pong lemma of Klein to obtain freeness and discreteness of 〈φ̃k1

1 , φ̃
k2

2 〉: fix a

ξ ∈ ∂H4
R
\ (U1 ∪U2), then any non-trivial reduced word in φ̃1, φ̃2 sends ξ inside

one of U1 or U2, hence the orbit of ξ is discrete in ∂H
4
R
( proving discreteness of

〈φ̃k1

1 , φ̃
k2

2 〉) and any such word is nontrivial in SO(4, 1) (proving freeness). �

On the other hand this phenomenon cannot happen in H2
R
,H3

R
, which yields

the following corollary of Theorem 4.8.

Corollary 1. If Γ is a finitely generated discrete subgroup of SL2(C) then Γ
is virtually diffuse.
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Proof. Since in dimension three all Kleinian groups are isomorphic to geomet-
rically finite ones (this is a consequence of Thurston’s hyperbolization theorem
for Haken manifolds, as explained in [49, Theorem 4.10]) the result would fol-
low if we can prove diffuseness for the latter class. But parabolic isometries
of H3 are necessarily unipotent (since if an element of SL2(C) has two equal
eigenvalues, they must be equal to ±1, and hence it is unipotent in the adjoint
representation), and thus we can apply Theorem 4.8 to deduce that a geometri-
cally finite Kleinian group in dimension three has a finite-index subgroup which
acts diffusely on H3.
We could also deduce Corollary 1 from the veracity of the Tameness conjecture
[1], [17] and the virtual diffuseness of three–manifolds groups, Theorem D from
the introduction. �

Also, when parabolic subgroups of Γ are large enough3 the hypothesis should
be satisfied. We will be content with the following application of this principle.

Corollary 2. If Γ is a lattice in one of the Lie groups SO(n, 1), SU(n, 1) or
Sp(n, 1) then Γ is virtually diffuse.

Proof. A lattice Γ in a rank one Lie group G is a geometrically finite group (cf.
5.4.2 in [9]), hence we need to prove that the parabolic isometries contained in
Γ have only roots of unity as eigenvalues. In the case that Γ is arithmetic there
is a quick argument: for any γ ∈ Γ, the eigenvalues of γ are algebraic numbers.
If in addition γ is parabolic, then all its eigenvalues are of absolute value one
as well as their conjugates (because the group defining Γ is compact at other
infinite places). A theorem of Kronecker [27, Theorem 1.31] shows that any
algebraic integer in C whose Galois conjugates are all of absolute value one
must be a root of unity, and it follows that the eigenvalues of γ are roots of
unity.
One can also use a more direct geometric argument to prove this in full gener-
ality. Let P =MAN be a parabolic subgroup of G which contains a parabolic
element of Γ; then it is well-known that Γ ∩ P is contained in MN (see the
proof of Lemma 4.6 above). Also Λ = Γ ∩ N is a lattice in N , in particular
Λ\N is compact (this follows from the Margulis Lemma [9, Proposition 3.5.1],
which implies that horosphere quotients inject into Γ\X , and the finiteness of
the volume of Γ\X). Corollary 2 will then follow from the next lemma.

Lemma 4.10. Let N be a simply connected nilpotent Lie group containing a
lattice Λ, and Q ≤ Aut(N) a subgroup which preserves Λ, all of whose elements
have only eigenvalues of absolute value one (in the representation on the Lie
algebra n). Then these eigenvalues are in fact roots of unity.

Proof. The exponential map exp : n → N is a diffeomorphism. By [55, The-
orem 2.12], there is a lattice L in the vector space n such that 〈exp(L)〉 = Λ.
It follows that the adjoint action of Q preserves L, hence for any q ∈ Q the

3For example, in the real hyperbolic case, when their span in the Lie algebra is of codi-
mension smaller than one.

Documenta Mathematica 21 (2016) 873–915



On Geometric Aspects of Diffuse Groups 899

characteristic polynomial of Ad(q) has integer coefficients, hence its eigenvalues
are the conjugates of some finite set of algebraic integers. Since they are also
all of absolute value one it follows from Kronecker’s theorem that they must
be roots of unity. �

It follows that, in the above setting, the image of Γ ∩ P in M has a finite-
order image in Aut(N) where M acts by conjugation. This action is faithful
(because an element of M cannot act trivially of an horosphere associated to
N , otherwise it would act trivially on the whole of X since it preserves these
horospheres) and it follows that the hypothesis on eigenvalues in Theorem 4.8
is satisfied by Γ. �

4.5.2. Action on the boundary.

Theorem 4.11. Let Γ, G be as in the statement of Theorem 4.8. Then there
is a finite-index Γ′ ⊂ Γ such that for any parabolic fixed point ξ ∈ ∂X for Γ′

with stabilizer Λξ in Γ′ the action of Γ′ on Γ′/Λξ is diffuse.

Proof. We take a finite-index subgroup Γ′ ≤ Γ as in the proof of Theorem 4.8
above. The key point is the following lemma.

Lemma 4.12. There is a dense subset SΓ′ ⊂ X such that for any x0 ∈ SΓ′ and
any parabolic fixed point ξ of Γ′, if bξ is a Busemann function at ξ we have

(3) ∀g ∈ Γ′, g 6∈ Λξ : max
(
bξ(gx0), bξ(g

−1x0)
)
> bξ(x0).

Proof. Fix ξ and bξ as in the statement. By definition of a Busemann function
there is a unit speed geodesic ray σ : [0,∞[→ X running to ξ in X ∪ ∂X , such
that for all x ∈ X we have

bξ(x) = lim
t→+∞

(d(x, σ(t)) − t) .

On the other hand, by construction of Γ′ (using Lemma 4.4) we know that for
all axial isometries g ∈ Γ′ \ {1} we have

∀t ≥ 0 max
(
d(gx0, σ(t)), d(g

−1x0, σ(t))
)
≥ d(x0, σ(t)) + 1;

passing to the limit we obtain (3) for all such g and for any choice of x0.
Now we show that for certain generic x0 the same is true for unipotent isome-
tries. In any case, for any unipotent isometry g ofX , it follows from Proposition
4.2 and the same argument as above that

(4) max(bξ(g
−1x0), bξ(gx0)) ≥ bξ(x0)

for all x0. We want to choose x0 in order to be able to rule out equality if
g ∈ Γ′−Λξ. For a given unipotent isometry η and a ζ ∈ ∂X with ηζ 6= ζ define

Eζ,η = {x ∈ X | bζ(ηx) = bζ(x)}
(note that this does not depend on the choice of the Busemann function bζ).
This is an embedded hyperplane in X , and hence (by Baire’s theorem) the
subset

SΓ′ = X −
⋃

ζ,η

Eζ,η
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where the union runs over all parabolic elements η of Γ′ and all parabolic fixed
points ζ of Γ′, is dense in X . Moreover, by the definition of SΓ′ , for x0 ∈ SΓ′

we never have bξ(gx0) = bξ(x0) for any unipotent g ∈ Γ′ with gξ 6= ξ. Thus (4)
has to be a strict inequality. �

Let ξ0 ∈ ∂X be a parabolic fixed point of Γ′ and bξ0 a Busemann function at
ξ0. We write Λ = Λξ0 . The function bξ0 is Λ-invariant and if we choose some
x0 ∈ X we may define a function f = fx0

on Γ′/Λ by

(5) f(γΛ) = bξ0(γ
−1x0) = bγξ0(x0).

By the lemma this function satisfies

(6) ∀γΛ ∈ Γ′/Λ, ∀g ∈ Γ′, g 6∈ γΛγ−1 : max
(
f(gγΛ), f(g−1γΛ)

)
> f(γΛ),

whenever x0 ∈ SΓ′ . Indeed, we have

max
(
f(gγΛ), f(g−1γΛ)

)
= max

(
bγξ0(gx0), bγξ0(g

−1x0)
)

and according to (3) the right-hand side is strictly larger than bγξ0(x0) = f(γΛ).
The existence of a function f satisfying (6) implies that the action Γ′ on Γ′/Λ
is weakly diffuse, i.e. every non-empty finite subset A ⊂ Γ′/Λ has at least one
extremal point. Indeed, any a ∈ A such that f(a) realizes the maximum of f
on A is extremal in A.
Using an additional trick we can actually deduce diffuseness. Let A ⊂ Γ′/Λ be
finite with |A| ≥ 2, and let a be an extremal point. By shifting A we can assume
that a = Λ. Now let ξ0 be the fixed point of Λ and bξ0 a Busemann function.
Choose x0 ∈ SΓ′ such that x0 is (up to Λ) the only point realizing the minimum
of bξ0 on Γ′x0 (this is possible by taking x0 in a sufficiently small horoball at
ξ0, since SΓ′ is dense) and define f on Γ′/Λ as in (5). By construction f takes
it’s minimal value at a. So let b ∈ A be a point where f takes a maximal value.
By the given argument b is extremal in A. On the other hand f(b) > f(a) and
so b 6= a. We conclude that A has at least two extremal points. �

5. Fundamental groups of three–manifolds

In this section we prove Theorem D, whose statement we recall now :

Theorem. LetM be a compact three–manifold and Γ = π1(M) its fundamental
group. Then there is a finite-index subgroup Γ′ ≤ Γ which is diffuse.

The proof is a rather typical application of Geometrization. We begin with an
algebraic result on graph products, afterwards we use it to construct a suitable
covering (cf. [37]).

5.1. Algebraic preliminaries: a gluing lemma. Bowditch [10] showed
that if Γ is the fundamental group of a graph of groups such that for any
vertex group Γi and adjacent edge group Λi, both the group Λi and the action
of Γi on Γi/Λi are diffuse, then Γ is diffuse. In order to glue manifolds it is
necessary to understand graph products of virtually diffuse groups. For free
products there is a very simple argument.
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Lemma 5.1. The free product G = G1 ∗ G2 of two virtually diffuse groups G1

and G2 is again virtually diffuse.

Proof. Let Hi ≤f Gi be a finite index diffuse subgroup. Consider the homo-
morphism φ : G → G1 ×G2. The kernel K of φ is a free group (cf. I. Prop. 4
in [60]). Let H denote the inverse image of H1×H2 under φ. The subgroup H
has finite index in G and H ∩K is a free group. We get a short exact sequence

1 −→ K ∩H −→ H → H1 ×H2 −→ 1.

From Theorem 1.2 in [10] we see that H is diffuse. �

Note that the same argument shows that the free product of diffuse groups is
diffuse. In order to understand amalgamated products and HNN extensions of
virtually diffuse groups one needs to argue more carefully.
We will use the Bass-Serre theory of graph products of groups. We shall use
the notation of [60]. Recall that a graph of groups (G, Y ) is a finite graph Y
with vertices V (Y ) and edges E(Y ). Every edge e has an origin o(e) ∈ V (Y )
and a terminus t(e) ∈ V (Y ). Moreover for every edge there is an opposite
edge ē. To every vertex P ∈ V (Y ) and every edge e ∈ E(Y ) there are attached
groups GP and Ge = Gē. Moreover, for every edge e there is a monomorphism
ie : Ge → Gt(e) usually denoted by a 7→ ae. To a graph of groups one attaches
a fundamental group π1(G, Y ) – the graph product.
Let (G, Y ) be a graph of groups. A normal subcollection (N, Y ) consists of two
families (NP E GP )P∈V (Y ) and (Ne E Ge)e∈E(Y ) of normal subgroups in the
vertex and edge groups which are compatible in the sense that

ie(Ne) = ie(Ge) ∩Nt(e) and Ne = Nē

for every edge e ∈ E(Y ). We say that (N, Y ) is of finite index, if for every
vertex P the index of NP in GP is finite.

Lemma 5.2. Let (G, Y ) be a graph of finite groups. The fundamental group
Γ = π1(G, Y ) is residually finite and virtually free.

Proof. The residual finiteness follows from Theorem 3.1 of Hempel [37]. To
apply his result we need to specify sufficiently small normal subcollections
(H,Y ) in (G, Y ) such for every P ∈ V (Y ) the group HP has finite index in
GP . Since we are dealing with finite groups it is easy to check that we can
simply choose HP = {1} and He = {1} for every vertex P and edge e.
Using that Γ is residually finite, we can find a finite index subgroup N E Γ
which intersects the embedded vertex group GP trivially for any of the finitely
many vertices P ∈ V (Y ). Therefore, the subgroup N acts freely (without edge
inversion) on the Bass-Serre tree associated with the graph (G, Y ). We deduce
that N is a free group [60, I. Thm. 4]. �

Let (G, Y ) be a graph of groups and let (N, Y ) be a normal subcollection.
To such a data we can associate a quotient graph of groups (H,Y ) where
HP = GP /NP and He = Ge/Ne for all vertices P and edges e. There is a
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natural surjective quotient morphism q : π1(G, Y ) → π1(H,Y ). We are now
able to state and prove the (algebraic) gluing Lemma.

Lemma 5.3 (Gluing Lemma). Let (G, Y ) be a graph of groups such that

(i) every edge group Ge is diffuse
(ii) there is a normal subcollection (N, Y ) of finite index such that for every

edge e ∈ E(Y ) the group Nt(e) acts diffusely on Gt(e)/ie(Ge).

In this case the fundamental group Γ = π1(G, Y ) is virtually diffuse.

Proof. Consider the associated quotient morphism q : Γ → π1(H,Y ). The
kernel N of q is the normal subgroup generated by the groups (NP )P∈V (Y ). Let
Γ and N act on the Bass-Serre tree T associated with (G, Y ). The stabilizer
in Γ (resp. N) of a vertex v ∈ V (T ) above P ∈ V (Y ) is isomorphic to GP

(resp. NP ). It acts on the set of adjacent edges E(v) ⊂ E(T ). Pick an edge
e ∈ E(Y ) with t(e) = P . As a set with GP action E(v) is isomorphic to
GP /ie(Ge). By assumption (ii) the action of NP on GP /ie(Ge) is diffuse. By
a result of Bowditch [10, Prop. 2.2] we deduce that E(T ) is a diffuse N set.
Since the edge groups are assumed to be diffuse, we see that N is diffuse.
The quotient (H,Y ) is a graph of finite groups, we know from Lemma 5.2 that
it is virtually free. Since free groups are diffuse, the short exact sequence

1 −→ N −→ Γ −→ π1(H,Y ) −→ 1

implies the assertion by Thm. 1.2 (2) of [10]. �

5.2. Geometrization and the proof of Theorem D.

5.2.1. Definitions. We recall here the definitions which allow to state the Ge-
ometrization Theorem which was conjectured by W. Thurston ([64], see also
[59]) and proven by G. Perelman [51, 52] (see also [44] for a complete account
of Perelman’s proof).
In the following we consider (without loss of generality) only orientable man-
ifolds. A three–manifold M is called irreducible if all embedded 2-spheres in
M bound a ball. A manifold is prime if it is irreducible or homeomorphic to
S1 × S2. According to the Kneser–Milnor decomposition every closed three–
manifold is a finite connected sum of prime manifolds. A closed irreducible
manifold M has a further topological decomposition, called the Jaco–Shalen–
Johansson decomposition, which consists in a canonical collection of embedded,
essentially disjoint 2-tori in M (see [41]). The Geometrization Theorem states
that every connected component of the complement in M of this collection of
tori is either a finite volume hyperbolic manifold or Seifert fibered.

5.2.2. Virtual diffuseness. The following lemma treats the pieces of the Ge-
ometrization Theorem. It is the key ingredient for Theorem D.

Lemma 5.4. Let M be a compact three–manifold with incompressible toric
boundary. If M is either hyperbolic of finite volume or Seifert fibered, then
Γ = π1(M) contains a diffuse subgroup Γ′ of finite index. Moreover, if M has
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non-empty boundary, then for almost all primes p the group Γ′ can be chosen
so that for any peripheral subgroup Λ of Γ

(a) the Γ′-action on Γ/Λ is diffuse and
(b) Γ′ ∩ Λ is the characteristic subgroup of index p2.

Proof. Assume first that M is closed. If M is Seifert fibered, then π1(M) is a
an extension of a group which is virtually a surface group by a cyclic group C
(cf. Lemma 3.2 in [59]). If C is infinite, such a group is virtually diffuse by the
results of Bowditch [10]. Otherwise M is covered by S3 and the fundamental
group is finite. If M is hyperbolic, then the virtual diffuseness follows from
Theorem B.
Now we turn to the case where M has non-empty boundary. Assume first that
M is hyperbolic. In π1(M) there are only finitely many, say m, hyperbolic
conjugacy classes represented by elements h1, . . . , hm with translation length
less than 2 log(1 +

√
2) (cf. Lemma 4.7). By Lemma 4.1 of [37] we can find,

for almost all primes p, a normal subgroup of finite index Γ′
p ≤ π1(M) which

does not contain h1, . . . , hm and which intersects each peripheral subgroup in
its characteristic subgroup of index p2. Using Theorem 4.11 such a group Γ′

p is
diffuse and acts diffusely on Γ/Λ for any peripheral Λ when p is large enough.
Finally assume that M is Seifert fibered. There is a short exact sequence

1 −→ Z −→ π1(M)
q−→ G −→ 1

where Z is generated by the regular fibers and G is the fundamental group of a
two dimensional orbifold B with non-empty boundary. Taking the finite index
subgroup of elements commuting with the regular fibres (which contains the
peripheral subgroups), we can assume that the extension is central. Since the
boundary of M is incompressible, the simple closed boundary curves d1, . . . dk
of B have infinite order in G. For almost all primes p there is a free normal
subgroup Gp ⊂ G of finite index such that Gp ∩ 〈di〉 = 〈dpi 〉. One way to see
this is to argue using the presentation of G as given in [36, 12.1]. Geometrically
this can be seen as follows: Glue a disc with a p-cone point into every boundary
curve of B. For almost all p the resulting orbifold Bp is good and has hence

a finite sheeted regular cover B̃p which is a manifold. Removing the inverse
images of the glued discs we obtain a finite covering space Sp of B which is
a compact surface so that the boundary components are p-fold covers of the
boundary components of B. Since a compact surface with non-empty boundary
has a free fundamental group the claim follows.

The finite sheeted cover M̃p corresponding to q−1(Gp) has fundamental group
isomorphic to Z × Gp. Finally the group Γ′

p = pZ × Gp is diffuse and inter-

sects the peripheral subgroups in their characteristic subgroups of index p2. It
remains to verify that the action of Γ′

p on Γ/Λ is diffuse. This action factors
through the group Gp and so the assertion follows, for p large enough, from
Theorem 4.11 if we embed Gp as a discrete subgroup into SL2(R).
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There is another argument for the diffuseness of this action: We can assume
that the surface Sp has more than one boundary component, and so the bound-
ary curves can be chosen to be part of a free generating set. Let F be a free
group and f ∈ F an element of a free generating set, then by Prop. 2.2 in [10]
the action of F on F/〈f〉 is diffuse. �

5.2.3. Proof of Theorem D. Let M be a compact three–manifold; by doubling
it (and since virtual diffuseness passes to subgroups) we may assume that it
is in fact closed. By Lemma 5.1 and the Kneser–Milnor decomposition we
may assume thatM is irreducible. An irreducible manifold admits a geometric
decomposition (see 5.2.1), which yields a decomposition of π1(M) as a graph
of groups whose vertex groups are fundamental groups of Seifert fibered or
hyperbolic manifolds and the edge groups are peripheral subgroups. Choosing
a prime number p which is admissible for all the occurring pieces, it follows
from Lemma 5.4 that this graph of groups has a normal subcollection which
satisfies the hypotheses of Lemma 5.3.

5.3. Three–dimensional infra-solvmanifolds. A three–dimensional solv-
manifold is a (left) quotient of the solvable Lie group

Sol = R2 ⋊R; t · x =

(
et

e−t

)
· x

by a discrete subgroup; an infra-solvmanifold is a quotient of such by a finite
group acting freely. Any left-invariant Riemannian metric on Sol induces a
complete Riemannian metric on an infra-solvmanifold. A compact solvmanifold
is finitely covered by a torus bundle (see for example [59, Theorem 5.3 (i)]),
hence its fundamental group contains a subgroup of finite index which is an
extension of Z2 by Z. More precisely, this group will be isomorphic to some

ΓA = 〈Z2, t | ∀v ∈ Z2, tvt−1 = Av〉
where A ∈ SL2(Z) is not unipotent. Such a group is diffuse by [10, Thm 1.2].
On the other hand we will now explain how to construct infra-solvmanifolds
(so-called ‘torus semi-bundles’) of dimension three with zero first Betti number
(by gluing I-bundles over Klein bottles, see [35]), which are then not locally
indicable and hence not diffuse.
The following result is a special case of Proposition 3.11. We shall give another
geometric argument (see also [33, Corollary 8.3] for a complete description
of the groups of isometries acting properly discontinuously, freely and cocom-
pactly on Sol from which it follows easily).

Proposition 5.5. In every commensurability class of compact three–
dimensional infra-solvmanifolds there is a manifold with non-diffuse fun-
damental group.

Proof. In this proof we will first describe a topological construction from [35]
of sol-manifolds with b1 = 0, and then show that any sol-manifold is commen-
surable to one of these.
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Let N be the non-trivial I-bundle over the Klein bottle, so that ∂N = T2.
Then for any mapping class B ∈ SL2(Z) of T2 the gluing M = N ∪φ N has
b1(M) = 0 or is Seifert; in the former case it is a sol-manifold and is doubly
covered by the torus bundle with holonomy A0 = SB−1SB where S is the
symmetry (x, y) 7→ (−x, y). In this way we get all A0s of the form

(7) A0 =

(
b 2a
2c b

)

where a, b, c ∈ Z: this follows from a direct computation.
On the other hand we will see that for any hyperbolic A ∈ SL2(Z) there is
an integer n > 0 such that An is conjugated to a matrix of the form above.
This implies the proposition since then the mapping torus of An (which covers
that of A) has a quotient with b1 = 0. Let us prove this claim: take L to be
the geodesic line (in the Poincaré upper half-plane) orthogonal to the axis of
A ending at ∞; then we can find h ∈ SL2(Q) such that hL = (0,∞). Since
h commensurates SL2(Z) the group hAZh−1 ∩ SL2(Z) is non-trivial ; take any
A′ 6= Id in there, then A′ has both diagonal coefficients equal (this also follows
from a simple computation). Taking A0 to be the cube or square of A′ we get
a matrix of the form (7) above. �

Appendix A. Computational aspects

A.1. Finding ravels. Given a group Γ it is a substantial problem to decide
whether or not the group is diffuse. To a certain degree this problem is vulner-
able to a computational approach which will be explained in this section.
For all the following algorithms we suppose that we have a way of solving
the word problem in a given group Γ; in practice we used computations with
matrices to do this. We will not make reference to the group Γ in the algorithms.
The first algorithm determines, given a finite subset A of Γ and an element
a ∈ A, whether a is extremal in A or not.

Algorithm 1 Given a ∈ A ⊂ Γ, determines if a is extremal in A

1: function IsExtremal(a,A)
2: B = A \ {a}
3: for all b ∈ B do

4: if ab−1a ∈ A then return False ⊲ If b = ga and
g−1a = ab−1a ∈ A then a is not extremal.

5: return True

The following algorithm returns the largest ravel contained in A by successively
removing extremal points. If A contains no ravel, then it returns the empty
set. Of course, the algorithm is not able to decide if a ravel exists at all (hence
is of no use to prove that a group is diffuse).
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Algorithm 2 Given A ⊂ Γ, finds the largest ravel contained in A

1: function FindRavel(A)
2: for all a ∈ A do

3: if IsExtremal(a,A) = True then return FindRavel(A \ {a})
4: return A ⊲ No extremal point was found in A, so A is a ravel or

empty

Finally, it may be of interest to determine minimal ravels; the following algo-
rithm, starting from a ravel A, finds a minimal one contained in A (note that
the result may depend on the order on which the elements of A are looped
over).

Algorithm 3 Given a ravel A ⊂ Γ, finds a minimal ravel contained in A

1: function MinRavel(A)
2: for all a ∈ A do

3: B = FindRavel(A \ {a})
4: if B 6= ∅ then return MinRavel(B)

5: return A

To prove Proposition 2.3 we ran (with two different implementations in Magma
[8] and in Sage/Python [62]) the algorithms to test diffuseness on the group
with presentation

〈a, b|a2b2a2b−1ab−1, a2b2a−1ba−1b2〉,
which is the fundamental group of the Weeks manifold, the hyperbolic three–
manifold of smallest volume. We actually used the representation to SL2(C)
given in the proof of Proposition 3.2 in [20]:

a =

(
x 1
0 x−1

)
, b =

(
x 0

2− (x+ x−1) x−1

)

where

x6 + 2x4 − x3 + 2x2 + 1 = 0.

It turns out that the word metric ball of radius four in the generators a, b
contains a ravel of cardinality 141 (further computation showed that the latter
contains a minimal ravel of cardinality 23).

A.2. Implementation.

A.2.1. SAGE. The Sage implementation of the algorithm (for linear groups)
can be found in [26]. It has to be run in a Sage environment, and the main
function is max_diff, which takes as input a pair (S,M) where M is a Sage
MatrixSpace object, and S a collection of invertible matrices in M. Its output
is the (possibly empty) maximal ravel contained in S. The file also contains
the function ball, which inputs a triple (r, gens,M) which computes the ball of
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radius r in the group generated by the set gens of invertible matrices in M (in
the word metric associated to gens). Another file in [26] can be run directly in a
Sage environment and outputs a ravel of cardinality 141 in the Weeks manifold
group.

A.2.2. MAGMA. An implementation for the MAGMA computer algebra sys-
tem can be found in [26]. It includes functions findRavel, findMinRavel and
a procedure BallWeeks to generate a ball of given radius in the Weeks manifold
group. To compute a ravel in the Weeks manifold group run the following lines

|> B := BallWeeks(4);

|> findRavel(B);

Appendix B. A diffuse group which is not left-orderable

by Nathan M. Dunfield

This appendix is devoted to the proof of

Theorem B.1. Let N be the closed orientable hyperbolic 3-manifold defined
below. Then π1(N) is diffuse but not left-orderable.

This example was found by searching through the towers of finite covers of
hyperbolic 3-manifolds studied in [18, §6]. There, each manifold has b1 = 0
(which is necessary for π1 to be non–left-orderable) and the length of the systole
goes to infinity (so that we can apply Bowditch’s criterion for diffuseness). We
begin by giving two descriptions of N , one purely arithmetic and the other
purely topological.

B.1. Arithmetic description. Throughout this section, a good reference
for arithmetic hyperbolic 3-manifolds is [48]. Let K = Q(α) be the number
field where α3+α−1 = 0; this is the unique cubic field with discriminant −31.
It has one real embedding and one pair of complex embeddings; our convention
is that the complex place corresponds to α ≈ −0.3411639 + 1.1615414i. Its
integer ring OK has unique factorization, so we will not distinguish between
prime elements and prime ideals of OK . The unique prime of norm 3 in OK is
π = α + 1, and let D be the quaternion algebra over K ramified at exactly π
and the real place of K. Concretely, we can take D to be generated by i and
j where i2 = −1, j2 = −3 and k = ij = −ji. The manifold N will be the
congruence arithmetic hyperbolic 3-manifold associated to D and the level π3,
whose detailed construction we now give.
Let OD be a maximal order in D; this is unique up to conjugation by [48,
Example 6.7.9(3)]. Let O1

D denote the elements of OD of (reduced) norm 1.
At the complex place of K, the algebra C ⊗K D is just the matrix algebra
M2(C). Let Λ be the subgroup of PSL2(C) ∼= Isom+ H3 which is the image of
O1

D under the induced map D1 → SL2(C) → PSL2(C). Since D is a division
algebra, Λ is a cocompact lattice. Let Kπ be the π-adic completion of K, which
is isomorphic to Q3. Let Dπ = Kπ ⊗K D, which is the unique quaternion
division algebra over Kπ [48, §2.6]. Define w : Dπ → Z by w = ν ◦ n where
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ν : Kπ → Z is the (logarithmic) valuation and n : Dπ → Kπ is the norm
function. Then Oπ = {u ∈ Dπ | w(u) ≥ 0} is the valuation ring of Dπ and
Q = {u ∈ Dπ | w(u) ≥ 1} is the maximal two-sided ideal in Oπ (compare [48,
§6.4]). Define Γ to be the image of O1

D ∩
(
1 +Q3

)
in PSL2(C), and let N be

the associated hyperbolic orbifold Γ
∖
H3.

We claim that Γ is torsion-free and hence N is a manifold. First note that
Qn = {u ∈ Dπ | w(u) ≥ n}. Now for γ ∈ Γ, we have γ = 1 + q for q ∈ Q3;
from n(γ) = 1 we get that tr(γ) − 2 = −n(q) and thus tr(γ) − 2 ∈ π3 since
w(q) ≥ 3. If γ has finite order, then tr(γ) = ξ + ξ−1 where ξ is a root of unity.
Since tr(γ) ∈ OK , it would have to be one of {−1, 0, 1} and none of those are
2 mod π3. So N is a manifold.

B.2. Topological description. Let M be the hyperbolic 3-manifold
m007(3, 2) from the Hodgson-Weeks census [39]; alternatively, M is the
(−9/2,−3/2) Dehn surgery on the Whitehead link L, where +1 surgery on
L yields the figure-8 knot rather than the trefoil. Then vol(M) ≈ 1.58316666
and H1(M ;Z) = Z/3Z⊕Z/9Z. Let N ′ be the regular cover ofM corresponding
to any epimorphism π1(M) → (Z/3Z)2; thus vol(N ′) ≈ 14.24849994. We will
show:

Proposition B.2. The hyperbolic manifolds N and N ′ are isometric.

Proof. We give a detailed outline, but many steps are best checked by rigorous
computation; complete Sage [62] source code for this is available at [26]. From
a triangulation for the alternate topological description of M as m036(3,−1),
Snap [29, 22] gives the group presentation

(8) π1(M) =
〈
a, b

∣∣ aaBaabbAbb = 1, abbAbAAbAbb = 1
〉

where A = a−1 and B = b−1. Moreover, Snap rigorously checks that M is
hyperbolic and that the holonomy representation π1(M) → PSL2(C) lifts to
ρ : π1(M) → SL2(C) which is characterized (up to conjugacy) by tr (ρ(a)) =
tr (ρ(b)) = α2 + 1 and tr (ρ(ab)) = α.
An OK basis for OD can be taken to be {1, i, x, y} where x = (i + j)/2 and
y = (3π + 3π2i+ π2j + πk)/6. If we define

(9) a = 1 + αi + αx+ (α− 1)y and b = −i · a · i
then computing the norms and traces of

{
a, b, a·b

}
and evaluating the relations

in (8) shows that a 7→ a and b 7→ b gives a homomorphism π1(M) → O1
D ≤

SL2(C) which is a conjugate of ρ. Henceforth, we identify π1(M) with the

subgroup of O1
D generated by

{
a, b
}
.

Now, GAP or Magma [28, 8] easily checks that π1 (N
′) is generated by

{
c = a3 , d = b3 , e = baBA, f = bABa

}

with defining relators:

DefDeceFdFcFe DeceDecDCEfCEfCfDf

ECEdFcDfDeceDeccFec fCfDecdcFecfDeceDec

Documenta Mathematica 21 (2016) 873–915



On Geometric Aspects of Diffuse Groups 909

To see that π1 (N
′) ≤ Γ, one just checks that w(g − 1) = 3 for g in {c, d, e, f}

to confirm that each is in 1 + Q3. By the volume formula [48, Thm 11.1.3],
vol(Λ

∖
H3) ≈ 0.26386111 and hence [Λ : π1 (N

′)] = 54. On the other hand,
one can calculate [Λ : Γ] exactly as in the proof of Theorem 1.4 of [18]; while
the number field in that example is Q(

√
−2), in both examples Kπ

∼= Q3 and
hence have isomorphic Dπ. Since it turns out that [Λ : Γ] is also 54, we have
π1 (N

′) = Γ as claimed. �

Theorem B.1 follows immediately from the following two lemmas, whose proofs
are independent of one another.

Lemma B.3. Let N be the closed hyperbolic 3-manifold defined above. Then N
has systole ≈ 1.80203613> 2 log

(
1 +

√
2
)
. In particular, π1(N) is diffuse.

Lemma B.4. Let N be the closed hyperbolic 3-manifold defined above. Then
π1(N) is not left-orderable.

Proof of Lemma B.3. We will show that the shortest geodesics inN correspond
to elements γ ∈ Γ = π1(N) with tr(γ) = α2−α; one such element is ec = baBaa .
Since the translation length of γ is given by

(10) min(γ) = T (tr(γ)) where T (z) = Re
(
2 arcosh(z/2)

)

the systole will thus have length ≈ 1.8020361. The conclusion that Γ is diffuse
follows immediately from Bowditch’s criterion (iv) quoted above in Section 2.1.
We will use the Minkowski geometry of numbers picture (see e.g. [50, §I.5]) to
determine the possible traces of elements of Γ with short translation lengths.
Let τC : K → C be the preferred complex embedding and τR : K → R be the
real embedding. We have the usual embedding from K into the Minkowski
space KR = R × C given by ι = τR × τC, and the key fact is that ι(OK) is a
lattice in KR. Thus the following set is finite:

T =
{
t ∈ OK

∣∣ |τR(t)| ≤ 2, |τC(t)| ≤ 4, and t− 2 ≡ 0 mod π3
}

We next show that T contains tr(γ) for any γ ∈ Γ with min(γ) ≤ 2.5. That
|τR(tr γ)| ≤ 2 follows since Γ is arithmetic: the quaternion algebra D ramifies
at the real place and so D1 becomes SU2 there. To see that min(γ) ≤ 2.5
implies |τC(t)| ≤ 4, note that T (z) is minimized for fixed |z| on the real axis
and that T (4) < 2.6339.
To complete the proof of the lemma, we will show that T = {2, α2−α, −2α2+
α − 1}, which suffices since T (−2α2 + α − 1) ≈ 2.33248166. The natural

inner product on KR is such that |ι(k)|2 = |τR(k)|2 + 2|τC(k)|2 for all k ∈ K.
Hence any element of T has norm ≤ 6, and our strategy is to enumerate all
elements of ι(OK) to that norm and check which are in T . A Z-basis for OK

is {1, α, α2}, and the Gram matrix in that basis for the inner product on KR

has smallest eigenvalue ≈ 1.534033. Regarding Z3 as having the standard norm
from R3, this says that the natural map Z3 → ι(OK) is distance nondecreasing.
Hence every element of T has the form c0 + c1α + c2a

2 where ci ∈ Z with
c21 + c22 + c23 ≤ 36. Computing T is now a simple enumeration of the 925 such
triples (c1, c2, c3). See [26] for a short program which does this. �
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Turning to the proof of Lemma B.4, you will quickly see that it was discovered
by computer, using the method of [16, §8]. Verifying its correctness is a matter
of checking that 23 different elements in Γ are the identity, which can be easily
done using the explicit quaternions given in (9); sample code for this is provided
with [26].

Proof of Lemma B.4. Assume Γ is left-orderable and consider the positive cone
P = {γ ∈ Γ | γ > 1}. We define some additional elements of Γ by

g = aBABB h = abbAb n = aBBAB m = aBaab v = ABAAb

By symmetry, we can assume g ∈ P . We now try all the possibilities for
whether the elements {g, h, n, d, c,m, v} are in P or not, in each case leading
to the contradiction that 1 ∈ P .

Case h ∈ P :
Case n ∈ P :

Case d ∈ P :
Case c ∈ P :

Case m ∈ P : Then P contains the following, which is 1 in Γ:
cgndhmgmcmdhmchm

Case M ∈ P : Then P contains the following, which is 1 in Γ:
MgndhdMgndhdMgnMhdMndMdMgndhdMgnMhdMgn

Case C ∈ P : Then P contains the following, which is 1 in Γ:
hCggnhCgChCgd

Case D ∈ P :
Case c ∈ P :

Case m ∈ P : Then P contains the following, which is 1 in Γ:
mcDnDmcDnDmcmnDmhDmDmcDnDmcmnDmc

Case M ∈ P : Then P contains the following, which is 1 in Γ:
gnMDnMgnnMgncDnMg

Case C ∈ P : Then P contains the following, which is 1 in Γ:
ChDnhCgDnhCggnnhCggnhCg

Case N ∈ P :
Case d ∈ P : Then P contains the following, which is 1 in Γ:

NdhNgdNdhhNgdNdhdNdhNgdNgdNdhdNdhNgdN
Case D ∈ P :

Case c ∈ P :
Case m ∈ P : Then P contains the following, which is 1 in Γ:

DmchNgmgmDNm
Case M ∈ P :

Case f ∈ P : Then P contains the following, which is 1 in Γ:
hNcNfhMhNcNfhNhNfDf

Case F ∈ P : Then P contains the following, which is 1 in Γ:
NhNcFMhNhNcFMhNcMhNcFcF

Case C ∈ P :
Case v ∈ P :

Case f ∈ P : Then P contains the following, which is 1 in Γ:
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ChCgChNfhf
Case F ∈ P : Then P contains the following, which is 1 in Γ:

CvFhCgvhCgvFhCgCh
Case V ∈ P : Then P contains the following, which is 1 in Γ:

ChCgChNhCgChVChChNhCgChhChNhCgChVChVhhChNhCgChVChV
Case H ∈ P :

Case n ∈ P :
Case d ∈ P : Then P contains the following, which is 1 in Γ:

nHggdHnHgnnHggnnHggdHnHgndgnnHggnnHggdHnHgnn
Case D ∈ P :

Case c ∈ P : Then P contains the following, which is 1 in Γ:
DnHcHDHgnnHcHDHDnnHcHDHDnDH

Case C ∈ P : Then P contains the following, which is 1 in Γ:
DHCnHgnnHggnnHgnHCnHgnnCnHCnHgnn

Case N ∈ P :
Case d ∈ P :

Case c ∈ P : Then P contains the following, which is 1 in Γ:
NNgdHcNgdHggdHgdNNgdHcNgdHggNgdHcNgdNNgdHcd

Case C ∈ P : Then P contains the following, which is 1 in Γ:
NgdHggdCgdNNgdCgNgdHggdCgdHggdCgdNd

Case D ∈ P :
Case c ∈ P :

Case m ∈ P : Then P contains the following, which is 1 in Γ:
NcHcHDNmDHDcHcHDNmHcHDNcHccHD

Case M ∈ P :
Case v ∈ P : Then P contains the following, which is 1 in Γ:

HcHDMvHcHDNcHHcHDNcHcv
Case V ∈ P : Then P contains the following, which is 1 in Γ:

DcVcHDNcHcHDcVcHDHVcHDH
Case C ∈ P :

Case m ∈ P : Then P contains the following, which is 1 in Γ:
DmgmDNmDNgmgmDNmDHDDmgmDNmDHHgmDNm

Case M ∈ P : Then P contains the following, which is 1 in Γ:
HDHCMHCMHDMCDHCMHDMHDMCMHCMHDM

�
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